•  
agra,ahmedabad,ajmer,akola,aligarh,ambala,amravati,amritsar,aurangabad,ayodhya,bangalore,bareilly,bathinda,bhagalpur,bhilai,bhiwani,bhopal,bhubaneswar,bikaner,bilaspur,bokaro,chandigarh,chennai,coimbatore,cuttack,dehradun,delhi ncr,dhanbad,dibrugarh,durgapur,faridabad,ferozpur,gandhinagar,gaya,ghaziabad,goa,gorakhpur,greater noida,gurugram,guwahati,gwalior,haldwani,haridwar,hisar,hyderabad,indore,jabalpur,jaipur,jalandhar,jammu,jamshedpur,jhansi,jodhpur,jorhat,kaithal,kanpur,karimnagar,karnal,kashipur,khammam,kharagpur,kochi,kolhapur,kolkata,kota,kottayam,kozhikode,kurnool,kurukshetra,latur,lucknow,ludhiana,madurai,mangaluru,mathura,meerut,moradabad,mumbai,muzaffarpur,mysore,nagpur,nanded,narnaul,nashik,nellore,noida,palwal,panchkula,panipat,pathankot,patiala,patna,prayagraj,puducherry,pune,raipur,rajahmundry,ranchi,rewa,rewari,rohtak,rudrapur,saharanpur,salem,secunderabad,silchar,siliguri,sirsa,solapur,sri-ganganagar,srinagar,surat,thrissur,tinsukia,tiruchirapalli,tirupati,trivandrum,udaipur,udhampur,ujjain,vadodara,vapi,varanasi,vellore,vijayawada,visakhapatnam,warangal,yamuna-nagar
Linear Differential Equations

Linear Differential Equations

Definition

An equation containing a variable, its derivative and a few more functions of degree one is called a linear differential equation. The standard form of representing a linear differential equation is dy / dx + Py = Q. In this equation, x is an independent variable, and y is the dependent variable. We find derivatives of dependent variables only with respect to an independent variable.

Every linear differential equation can be solved using a particular formula for its solution. Some examples of linear differential equations are:
1. dy / dx + y = sin x
2. dy / dx + (-27y) / x = x2.e-x

General solution formula of a linear differential equation

The general solution of the differential equation dy / x + Py = Q is given by:

y . (I.F) = ∫(Q . (I.F) . dx) + Cy . (I.F) = ∫(Q . (I.F) . dx) + C

Here, I.F. is the integrating factor and is given by: e ∫P . dx e ∫P . dx.

We can interchange x and y if y is our independent variable and x is a dependent variable depending upon the question.

Derivation of the solution of a differential equation

We know, the first order differential equation is represented as: dy /dx + Px = Q

We need to multiply both sides by a function in x, say g (x), such that the right hand side of the above equation gets a derivative in y. g (x). Therefore,
d /dx (y . g (x)) = y . g (x)
g (x) . dy / dx + P . g (x) . y = Q . g (x)
g (x) . dy / dx + P . g (x) y = d / dx (y . g (x)]
g (x) . dy / dx + P . g (x) . y = g (x) . dy / dx + y . g' (x)
P . g (x) = g' (x)
P = g' (x) / g(x)

Integrating both sides with respect to x, we get,
∫P . dx = ∫g′ (x) / g (x) . dx

∫P . dx = log (g(x))

g (x) = e∫P . dx

The function g (x) = e∫P . dx is the Integrating Factor (I.F) of the given linear differential equation. Substituting the value of g (x) in linear differential equation, we get,

e∫P . dx . dy / dx + P e∫P.dx y = Q . e∫P . dx

d / dx (y . e∫P . dx) = Q e∫P . dx

Integrating both sides, with respect to x, we get,

y . e∫P . dx = ∫(Q . e∫P . dx . dx

y = e−∫P . dx .∫(Q . e∫P.dx . dx) + C

The above expression is the general solution of the linear differential equation.

Steps to solve a linear differential equation

1. Simplify the entire differential equation and write it down in the form dy / dx + Py = Q.
2. Find the integrating factor of the given differential equation.
3. Write down the solution of the linear differential equation as: y (I.F) = ∫(Q × I.F) . dx + C.

Example: Find the general solution of the differential equation x dy - (y + 2x2) . dx = 0
Solution:

We can write the simplified form of the differential equation as:
dy / dx - y/x = 2x

Comparing this with the differential equation dy/dx + Py = Q we have the values of P = -1/x and Q = 2x.

Hence, the integration factor IF = e ∫(−1/x) . dx

= e−log x =1/x
We need to solve the equation as:

y 1/x = ∫2x . 1/y . dx + c
y/x = ∫2 . dx + c
y/x = 2x + c
y = 2x2 + xc, which is the required solution of the differential equation.

NEET Related Links

NEET Exam 2024

NEET 2024 Exam Dates

NEET 2024 Exam pattern

NEET 2024 Syllabus

NEET 2024 Eligibility Criteria

NEET 2024 Application

NEET UG Counselling

NEET FAQ

NEET UG Result

NEET 2024 Cut Off

Neet 2023 Toppers List Names & Rank

Neet Result 2023 Toppers list rank cut off

Neet Answer key Live Download PDF

Neet 2023 State Toppers List

JEE MAIN Related Links

JEE Main 2024

JEE Main Rank Predictor 2024

JEE Main College Predictor 2024

JEE Main 2024 Exam Dates

JEE Main 2024 Exam pattern

JEE Main 2024 Application

JEE Main 2024 Eligibility Criteria

JEE Main 2024 Syllabus

JEE Main 2024 Physics Syllabus

JEE Main 2024 Maths Syllabus

JEE Main 2024 Chemistry Syllabus

JEE Main 2024 Admit Card

JEE Main 2024 Counselling

JEE Main marks vs rank vs percentile

JEE Advanced Result 2023 live topper list

JEE Exam Preparation - How to calculate your rank jee

JEE Maths Syllabus - Important topics and weightage

JEE Advanced Related Links

JEE Advanced 2024 Exam Dates

JEE Advanced 2024 Application

JEE Advanced 2024 Eligibility Criteria

JEE Advanced 2024 Syllabus

JEE Advanced 2024 Maths Syllabus

JEE Advanced 2024 Physics Syllabus

JEE Advanced 2024 Chemistry Syllabus

JEE Advanced Exam Result

JEE Advanced Exam Dates

JEE Advanced Registration Dates

CUET Related Links

CUET 2024 Eligibility Criteria

CUET 2024 Admit Card

CUET 2024 Exam Pattern

CUET 2024 FAQs

CUET 2024 Counselling

CUET 2024 Syllabus

CUET 2024 Result

CUET 2024 Answer Key

CUET 2024 Preparation

CUET CUTOFF

CUET 2024 Application Form

Talk to our expert
Resend OTP Timer =
By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy