•  
agra,ahmedabad,ajmer,akola,aligarh,ambala,amravati,amritsar,aurangabad,ayodhya,bangalore,bareilly,bathinda,bhagalpur,bhilai,bhiwani,bhopal,bhubaneswar,bikaner,bilaspur,bokaro,chandigarh,chennai,coimbatore,cuttack,dehradun,delhi ncr,dhanbad,dibrugarh,durgapur,faridabad,ferozpur,gandhinagar,gaya,ghaziabad,goa,gorakhpur,greater noida,gurugram,guwahati,gwalior,haldwani,haridwar,hisar,hyderabad,indore,jabalpur,jaipur,jalandhar,jammu,jamshedpur,jhansi,jodhpur,jorhat,kaithal,kanpur,karimnagar,karnal,kashipur,khammam,kharagpur,kochi,kolhapur,kolkata,kota,kottayam,kozhikode,kurnool,kurukshetra,latur,lucknow,ludhiana,madurai,mangaluru,mathura,meerut,moradabad,mumbai,muzaffarpur,mysore,nagpur,nanded,narnaul,nashik,nellore,noida,palwal,panchkula,panipat,pathankot,patiala,patna,prayagraj,puducherry,pune,raipur,rajahmundry,ranchi,rewa,rewari,rohtak,rudrapur,saharanpur,salem,secunderabad,silchar,siliguri,sirsa,solapur,sri-ganganagar,srinagar,surat,thrissur,tinsukia,tiruchirapalli,tirupati,trivandrum,udaipur,udhampur,ujjain,vadodara,vapi,varanasi,vellore,vijayawada,visakhapatnam,warangal,yamuna-nagar

Composite Functions: Overview and Properties of Composite Functions

Composite Functions: Overview and Properties of Composite Functions

Let us take a function f defined by f(x)=x2+2x. For the given function we can easily find f(1), f(2),.....and so on. Basically we substitute a value for a variable inside the function in order to get the required result.

But do you know that we can also substitute some function in place of the variable and the new function obtained by doing so is known as a Composite function.Let us try to get a better insight on composite functions in this article.

Table of contents

Composite Function

Let f : AB and g : BC be two functions. Then the composition of f and g, denoted by gof, is defined as the function gof : AC given by gof (x) = g(f (x)), x A.

Please enter alt text

  • gof is defined only when range of the function f is a subset of domain of function g
  • fog is defined only when range of the function g is a subset of domain of function f
  • fogoh is defined only when range of f is a subset of domain of g & range of g is a subset of domain of f

Example : Let f : {1, 3, 2, 5}{3, 4, 5, 9} and g : {3, 4, 5, 9}{7, 11, 15} be functions defined as f (1) = 3, f (3) = 4, f (2) = f (5) = 5 and g(3) = g(4) = 7 and g(5) = g(9) = 11. Find gof.

Solution :

We have,

gof (1) = g (f (1)) = g(3) = 7

gof (3) = g(f (3))= g(4) = 7

gof (2) = g(f (2))= g(5) = 11

gof (5) =g(f (5)) = g(5) = 11

Additionally arrow diagrams for f,g & gof can be represented as:

Example :

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>If</mi><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup><mo>-</mo><mi mathvariant="normal">x</mi><mo>&#xA0;</mo><mo>&amp;</mo><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mo>&#xA0;</mo><mi>sinx</mi><mo>,</mo><mo>&#xA0;</mo><mi>then</mi><mo>&#xA0;</mo><mi>find</mi><mo>&#xA0;</mo><mi>the</mi><mo>&#xA0;</mo><mi>following</mi><mo>&#xA0;</mo><mspace linebreak="newline"/><mfenced><mi mathvariant="normal">i</mi></mfenced><mi>fog</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mfenced><mi>ii</mi></mfenced><mi>gof</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mspace linebreak="newline"/><mspace linebreak="newline"/><mspace linebreak="newline"/><mspace linebreak="newline"/><mspace linebreak="newline"/></math>

Solution:

The domain and range of function f=(-,)

Domain and range of function g=(-,) and [-1,1] respectively.

(i) As, Range of g is a subset of Domain of f. Hence, fog is defined.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mi>g</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mo>=</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>sin</mi><mn>3</mn></msup><mi>x</mi><mo>-</mo><mi>sin</mi><mi>x</mi></math>

(ii) As, Range of f is a subset of Domain of g. Hence, gof is defined.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mo>=</mo><mi>sin</mi><mfenced><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mo>=</mo><mi>sin</mi><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mi>x</mi></mrow></mfenced></math>

Note : For discrete function, the domain of gof is same as the domain of f and the codomain of gof is same as the codomain of g. But for all other functions the domain of gof is obtained by taking the intersection of the domain of resultant composite expression and the domain of f.

Concept video

Properties of Composite Function

Property 1 : In general, goffog, i.e., gf(x)fg(x), which means composition of functions is not commutative.

Example:Let f & g be two functions given by f(x)=x2 and g(x)=sin x

Then, fog(x)=f(g(x))=(sin x)2

And gof(x)=g(f(x))=sin (x)2=sin x2

Therefore, foggof.

Property 2 : Associative property of composite functions

Composite functions are associative, i.e., if three functions f, g, h are such that fo(goh) and (fog)oh are defined, then fo(goh) = (fog)oh

Example : Let three functions are given such that f(x)=x , g(x)=sin x, h(x)=ex .If fo(goh) and (fog)oh both exist, then prove thatfo(goh) = (fog)oh

Solution :

Let’s consider fo(goh)

fo(goh)=fo(g(h(x))=fo(g(ex))

fo(goh)=f(sin ex)=sin ex

Now (fog)oh

(fog)(h(x))=f(g(ex))=f(sin ex)=sin ex

Therefore, fo(goh) = (fog)oh.

Property 3 : If the functions f: A B and g:BC are one-one onto functions, then gof: AC, if defined, will also be a one-one and onto(bijective) function.

Proof :

  • One-one

Given are two one-one functions

f: A B and g:BC, and Rf Dg

Let a A and a' A

If gof is a one-one function, then g(f(a)) = g(f(a')) a = a'

Consider g(f(a)) = g(f(a'))

f(a) = f(a') {As g is a one-one function}

a = a' {f is a one-one function}

Therefore, g(f(a)) = g(f(a')) a = a' states that gof is a one-one function.

Hence proved.

  • Onto :

Given two onto functions, f: A B and g:BC and Rf Dg

gof: A C

Let cC and since g is an onto function, there exists b B such that g(b) = c.

As f is also an onto function, there exists an element aA such that f(a)=b.

Hence, c=g(b)=g(f(a)) =gof(a)

For every cC, there exists an aA such that gof(a)=c.

It means for every element in the codomain there exists a preimage in the domain. So, gof is onto.

Hence proved.

Example : Let the functions be f and g that are shown in the arrow diagram.

Function gof is defined because Rf and Dg have the same elements.

As we can observe that the functions f and g are onto functions, they result in a valid composite function gof, which is also an onto function.

Therefore, the composite function gof is given by,

Property 4 : Let f:AB, then foIA=IBof=f i.e., the composition of any function with the identity function is the function itself.

Property 5 : Let f:AB, g:BA be two functions such that gof=IA. Then, f is an injection and g is a surjection.

Property 6 : Let f:AB, g:BA be two functions such that fog=IB. Then, f is a surjection and g is an injection.

Property 7 : Let f: AB and g:BC be two functions. Then,

(i) gof:AC is onto g is onto

(ii) gof:AC is one-one f is one-one

(iii) gof:AC is onto and g is one-one f is onto

(iv) gof:AC is one-one and f is onto g is one-one

Practice Problems

Example : Given below are two functions that are bijections, i.e., functions f and g are both one-one and onto such that f:AB and g:BC. Verify whether gof:AC is bijective or not.

Solution:

As we can observe that Rf=Dg, and thus, gof is defined.

The composite function gof:AC is given by-

From the arrow diagram we can clearly observe that:

Different elements of A have different images in C. Hence, gof is one one.

Each element of C has a preimage in A. Hence, gof is onto.

Therefore, gof is Bijective.

Example :If f(x)=loge1 - x1 + x, x<1, then find f2x1 + x2.

(a) 2f(x) (b) [f(x)]2 (c) 2f(x2) (d) -2f(x)

Solution :

Given, f(x)=loge1 - x1 + x, x<1

Let us consider g(x)=2x1 + x2. Then,

f(2x1 + x2) = fg(x)=ln1 - g(x)1 + g(x)

⇒fg(x)=ln1 - 2x1 + x21 + 2x1 + x2=ln1 + x2 - 2x1 + x2 + 2x=ln1 - x1 + x2

⇒ fg(x)=2 ln1 - x1 + x=2 f(x)

Hence, option (a) is the correct answer.

Example : Let g(x)=x2+x-1 and gof(x)=4x2-10x+5, then f(54) is equal to

(a) -32 (b) -12 (c) 12 (d) 32

Solution :

g(x)=x2+x-1

gof(x)=4x2-10x+5

g(f(x))=4x2-10x+5

f2(x)+f(x)-1=4x2-10x+5

Putting x=54 and f(54)=t

t2 +t-1=4.(54)2-10.(54)+5

t2 +t+14=0

t=-12 or f(54)=-12

Example : If f is a function given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math> then find the domain of fofof.

Solution :

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mi>o</mi><mi>f</mi><mo>=</mo><mi>f</mi><mfenced><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mi>f</mi><mfenced><mfrac><mn>1</mn><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfrac></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>-</mo><mfenced><mstyle displaystyle="true"><mfrac><mn>1</mn><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfrac></mstyle></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow><mrow><mo>-</mo><mi>x</mi></mrow></mfrac><mspace linebreak="newline"/><mi>f</mi><mi>o</mi><mi>f</mi><mo>=</mo><mi>f</mi><mfenced><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mi>x</mi></mfrac></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mi>f</mi><mi>o</mi><mi>f</mi><mo>=</mo><mi>f</mi><mfenced><mrow><mi>f</mi><mfenced><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mi>f</mi><mfenced><mfrac><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mi>x</mi></mfrac></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>-</mo><mfenced><mstyle displaystyle="true"><mfrac><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mi>x</mi></mfrac></mstyle></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfrac><mi>x</mi><mrow><mi>x</mi><mo>-</mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mi>x</mi></math>

(fofof)(x)=x

The domain of x is R.

But the domain of f(x) is R-{1} and the domain of f(f(x)) is R-{0}.

Hence, Domain of (fofof)(x) will be the intersection of the domains of x,f(x)&f(f(x))

Therefore, the domain of fofof is R-{0,1}.

FAQs

1.Are composite function and composition of functions same?

Yes, the function that we get by the composition of two functions is called a composite function.

2.Is the order of functions important in composite functions?

Yes, as composition of functions is not commutative , goffog. Hence order of functions is important while dealing with composition of functions.

3.What is the formula for the composition of functions?

There is no formula for composition of functions but there is a representation for it, which is fog or f(g(x)).

NEET Related Links

NEET Exam 2024

NEET 2024 Exam Dates

NEET 2024 Exam pattern

NEET 2024 Syllabus

NEET 2024 Eligibility Criteria

NEET 2024 Application

NEET UG Counselling

NEET FAQ

NEET UG Result

NEET 2024 Cut Off

Neet 2023 Toppers List Names & Rank

Neet Result 2023 Toppers list rank cut off

Neet Answer key Live Download PDF

Neet 2023 State Toppers List

JEE MAIN Related Links

JEE Main 2024

JEE Main Rank Predictor 2024

JEE Main College Predictor 2024

JEE Main 2024 Exam Dates

JEE Main 2024 Exam pattern

JEE Main 2024 Application

JEE Main 2024 Eligibility Criteria

JEE Main 2024 Syllabus

JEE Main 2024 Physics Syllabus

JEE Main 2024 Maths Syllabus

JEE Main 2024 Chemistry Syllabus

JEE Main 2024 Admit Card

JEE Main 2024 Counselling

JEE Main marks vs rank vs percentile

JEE Advanced Result 2023 live topper list

JEE Exam Preparation - How to calculate your rank jee

JEE Maths Syllabus - Important topics and weightage

JEE Advanced Related Links

JEE Advanced 2024 Exam Dates

JEE Advanced 2024 Application

JEE Advanced 2024 Eligibility Criteria

JEE Advanced 2024 Syllabus

JEE Advanced 2024 Maths Syllabus

JEE Advanced 2024 Physics Syllabus

JEE Advanced 2024 Chemistry Syllabus

JEE Advanced Exam Result

JEE Advanced Exam Dates

JEE Advanced Registration Dates

CUET Related Links

CUET 2024 Eligibility Criteria

CUET 2024 Admit Card

CUET 2024 Exam Pattern

CUET 2024 FAQs

CUET 2024 Counselling

CUET 2024 Syllabus

CUET 2024 Result

CUET 2024 Answer Key

CUET 2024 Preparation

CUET CUTOFF

CUET 2024 Application Form

Talk to our expert
Resend OTP Timer =
By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy