agra,ahmedabad,ajmer,akola,aligarh,ambala,amravati,amritsar,aurangabad,ayodhya,bangalore,bareilly,bathinda,bhagalpur,bhilai,bhiwani,bhopal,bhubaneswar,bikaner,bilaspur,bokaro,chandigarh,chennai,coimbatore,cuttack,dehradun,delhi ncr,dhanbad,dibrugarh,durgapur,faridabad,ferozpur,gandhinagar,gaya,ghaziabad,goa,gorakhpur,greater noida,gurugram,guwahati,gwalior,haldwani,haridwar,hisar,hyderabad,indore,jabalpur,jaipur,jalandhar,jammu,jamshedpur,jhansi,jodhpur,jorhat,kaithal,kanpur,karimnagar,karnal,kashipur,khammam,kharagpur,kochi,kolhapur,kolkata,kota,kottayam,kozhikode,kurnool,kurukshetra,latur,lucknow,ludhiana,madurai,mangaluru,mathura,meerut,moradabad,mumbai,muzaffarpur,mysore,nagpur,nanded,narnaul,nashik,nellore,noida,palwal,panchkula,panipat,pathankot,patiala,patna,prayagraj,puducherry,pune,raipur,rajahmundry,ranchi,rewa,rewari,rohtak,rudrapur,saharanpur,salem,secunderabad,silchar,siliguri,sirsa,solapur,sri-ganganagar,srinagar,surat,thrissur,tinsukia,tiruchirapalli,tirupati,trivandrum,udaipur,udhampur,ujjain,vadodara,vapi,varanasi,vellore,vijayawada,visakhapatnam,warangal,yamuna-nagar
Differential Equation

Differential Equation - Calculator, Order, Degree, Solutions, Methods and Application


A differential equation is an equation that contains an independent variable, a dependent variable, and the derivatives of the dependent variable. For example, dy/dx = 25x is a differential equation because it contains a dependent variable, ‘y’, and an independent variable, ‘x’, along with the function of x.

Order and Degree

The order of the differential equation is defined as the highest-order derivative appearing in a differential equation, which means how many times the differentiation is performed in the equation. dy/dx = f(x) is a differential equation of order 1. y” + 2y’ – 20 = 0 is of order 2. Whereas, the strength of the highest-order derivative appearing in a differential equation after it has been freed of radicals and fractions is referred to as the differential equation's degree. In simpler terms, the power of the larger derivative is known as a degree. There is no defined degree if the differential equation consists of logarithmic, exponential, or trigonometric functions. For example: (y”)2 – y’ = 21 is a differential equation of degree 2.

Solutions of a Differential Equation

A solution of a differential equation is of the type k = f(l)+C if it satisfies the equation. There are particularly two types of solution for any differential equation. Assume you're given a differential equation of order n. It is referred to as a general solution if its solution comprises n arbitrary constants. By assigning specific values to arbitrary constants in the general solution of a differential equation, we can get its specific solutions.

Methods of Solving Differential Equations

Variable Separable Method

We derive the value of C by plugging x equivalent to a and into the general solution. We find the specific solution of the specified differential equation with this value constant as C. The Variable separable method is utilized to find the general solution of any given equation. First, we send all the like times to one side of the equation such that the equation becomes of the form dy/dx. Then dy and dx are integrated separately on both sides. The standard integration formulas and theories are used to find the integration of the dx side. Finally, we are left with an equation summed to a constant value.

Integrating Factor Method

The majority of the differential equations in this world are linear differential equations of the form (dy/dx) + Py = Q. Where P is a numeric constant and Q is an algebraic constant or a function of variable x. The opposite of the equation is also possible, dx/dy + Px = Q, where Q is an algebraic constant or a function of variable y. Solving a linear differential equation is quite fascinating. First, we determine the integrating factor of the equation. Integrating factor is the exponential raised to the power of integration of P. This value often comes as logarithmic, so it cancels the exponent part. Then the solution of the equation equals the product of y and the integrating factor. This is often the integration of Q and integrating factors (I.F.). A constant term C is bound to be produced after the solution.

Application of Differential Equation

  • Differential equations are mostly used in engineering tasks like determining the motion of the waves or movement of the electric current.
  • Exponential decays and growths of different unicellular organisms like bacteria, fungi, human cells are also calculated using differential equations.
  • They are also helpful in the commercial sector to calculate the investment and returns on them.

NEET Related Links

NEET Exam 2024

NEET 2024 Exam Dates

NEET 2024 Exam pattern

NEET 2024 Syllabus

NEET 2024 Eligibility Criteria

NEET 2024 Application

NEET UG Counselling


NEET UG Result

NEET 2024 Cut Off

Neet 2023 Toppers List Names & Rank

Neet Result 2023 Toppers list rank cut off

Neet Answer key Live Download PDF

Neet 2023 State Toppers List

JEE MAIN Related Links

JEE Main 2024

JEE Main Rank Predictor 2024

JEE Main College Predictor 2024

JEE Main 2024 Exam Dates

JEE Main 2024 Exam pattern

JEE Main 2024 Application

JEE Main 2024 Eligibility Criteria

JEE Main 2024 Syllabus

JEE Main 2024 Physics Syllabus

JEE Main 2024 Maths Syllabus

JEE Main 2024 Chemistry Syllabus

JEE Main 2024 Admit Card

JEE Main 2024 Counselling

JEE Main marks vs rank vs percentile

JEE Advanced Result 2023 live topper list

JEE Exam Preparation - How to calculate your rank jee

JEE Maths Syllabus - Important topics and weightage

JEE Advanced Related Links

JEE Advanced 2024 Exam Dates

JEE Advanced 2024 Application

JEE Advanced 2024 Eligibility Criteria

JEE Advanced 2024 Syllabus

JEE Advanced 2024 Maths Syllabus

JEE Advanced 2024 Physics Syllabus

JEE Advanced 2024 Chemistry Syllabus

JEE Advanced Exam Result

JEE Advanced Exam Dates

JEE Advanced Registration Dates

CUET Related Links

CUET 2024 Eligibility Criteria

CUET 2024 Admit Card

CUET 2024 Exam Pattern

CUET 2024 FAQs

CUET 2024 Counselling

CUET 2024 Syllabus

CUET 2024 Result

CUET 2024 Answer Key

CUET 2024 Preparation


CUET 2024 Application Form

Talk to our expert
Resend OTP Timer =
By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy