•  
agra,ahmedabad,ajmer,akola,aligarh,ambala,amravati,amritsar,aurangabad,ayodhya,bangalore,bareilly,bathinda,bhagalpur,bhilai,bhiwani,bhopal,bhubaneswar,bikaner,bilaspur,bokaro,chandigarh,chennai,coimbatore,cuttack,dehradun,delhi ncr,dhanbad,dibrugarh,durgapur,faridabad,ferozpur,gandhinagar,gaya,ghaziabad,goa,gorakhpur,greater noida,gurugram,guwahati,gwalior,haldwani,haridwar,hisar,hyderabad,indore,jabalpur,jaipur,jalandhar,jammu,jamshedpur,jhansi,jodhpur,jorhat,kaithal,kanpur,karimnagar,karnal,kashipur,khammam,kharagpur,kochi,kolhapur,kolkata,kota,kottayam,kozhikode,kurnool,kurukshetra,latur,lucknow,ludhiana,madurai,mangaluru,mathura,meerut,moradabad,mumbai,muzaffarpur,mysore,nagpur,nanded,narnaul,nashik,nellore,noida,palwal,panchkula,panipat,pathankot,patiala,patna,prayagraj,puducherry,pune,raipur,rajahmundry,ranchi,rewa,rewari,rohtak,rudrapur,saharanpur,salem,secunderabad,silchar,siliguri,sirsa,solapur,sri-ganganagar,srinagar,surat,thrissur,tinsukia,tiruchirapalli,tirupati,trivandrum,udaipur,udhampur,ujjain,vadodara,vapi,varanasi,vellore,vijayawada,visakhapatnam,warangal,yamuna-nagar
Applications of Linear Equations

Applications of Linear Equations

 

Sir William Rowan Hamilton, an Irish mathematician, invented linear equations in the year 1843. He induced relationships between various variables to find their values. To date, we use linear equations to solve numerous mathematical problems.

The general representation of a linear equation is given by: ax + by = c. Here, the variables have degree one, which makes them linear.

Linear equations are used in many scenarios as:

 1. Geometry problems
 2. Age problems
 3. Speed, distance and time problems
 4. Money and finance problems
 5. Ratios and proportions problems
 6. Hourly, daily and monthly wage problems
 7. Pressure and force problems
 8. Area and perimeter problems

Linear equations are widely used to solve relationships between two or more variables that occur in real life. Professionals make relationships between two or more factors and solve those using linear equations and linear algebra.

Here are a few examples based on linear equation applications:

Example: Given that the Sum of Two Numbers is 48. One of those numbers is thrice the other number. What are these numbers?
Solution:

Let the two unknown numbers be x and y.
According to the data given, the sum of both numbers is 48.
Therefore, x + y = 48
Also, one number is thrice the other number,
We will consider y as the bigger number, such that we can write 3x = y.
Using the substitution method and substituting y = 3x from the above equation, we get,
x + 3x = 48
4x = 48
x = 12
Also, y = 3x
Therefore, the value of y is 12 x 3 = 36
y = 36
We can verify it as, x + y = 48
12 + 36 = 48

Since, LHS = RHS, therefore, our solution is correct.

Example 2: What is the speed of a car if it travels from Mumbai to Pune in 4 hours, covering a distance of 800 km?
Solution:

Let the speed of the car be S, time t, and distance d.
We know the relation between time, speed and distance is given by:
Speed = distance/time
S = d / t
Here, d = 800, t = 4.
Therefore, we get,
S = 800/4
S = 200

Hence, the speed of the car is 200 km/hr.

Example 3: At present, the age of the son is one-fourth of his father. Assuming after 5 years, the son becomes one-third of his father’s age, calculate their present ages.
Solution:

Let us consider the present age of the father and son to be x and y, respectively.
According to the data given, the son's present age is one-fourth of his father’s age.
So, y = x/4 or x= 4y
We need to find the age after 5 years, so we add 5 to the present ages.
y + 5) = 1/3 (x + 5)
Or, 3y + 15 = x + 5
Substituting x = 4y from the above equations, we get,
3y + 15 = 4y + 5
4y - 3y = 15 - 5
Hence, y = 10
Now, x = 4y
x = 4 x 10 = 40.
Hence, x = 40.

Therefore, the father's present age is 40 years, and his son’s age is 10 years.

NEET Related Links

NEET Exam 2024

NEET 2024 Exam Dates

NEET 2024 Exam pattern

NEET 2024 Syllabus

NEET 2024 Eligibility Criteria

NEET 2024 Application

NEET UG Counselling

NEET FAQ

NEET UG Result

NEET 2024 Cut Off

Neet 2023 Toppers List Names & Rank

Neet Result 2023 Toppers list rank cut off

Neet Answer key Live Download PDF

Neet 2023 State Toppers List

JEE MAIN Related Links

JEE Main 2024

JEE Main Rank Predictor 2024

JEE Main College Predictor 2024

JEE Main 2024 Exam Dates

JEE Main 2024 Exam pattern

JEE Main 2024 Application

JEE Main 2024 Eligibility Criteria

JEE Main 2024 Syllabus

JEE Main 2024 Physics Syllabus

JEE Main 2024 Maths Syllabus

JEE Main 2024 Chemistry Syllabus

JEE Main 2024 Admit Card

JEE Main 2024 Counselling

JEE Main marks vs rank vs percentile

JEE Advanced Result 2023 live topper list

JEE Exam Preparation - How to calculate your rank jee

JEE Maths Syllabus - Important topics and weightage

JEE Advanced Related Links

JEE Advanced 2024 Exam Dates

JEE Advanced 2024 Application

JEE Advanced 2024 Eligibility Criteria

JEE Advanced 2024 Syllabus

JEE Advanced 2024 Maths Syllabus

JEE Advanced 2024 Physics Syllabus

JEE Advanced 2024 Chemistry Syllabus

JEE Advanced Exam Result

JEE Advanced Exam Dates

JEE Advanced Registration Dates

CUET Related Links

CUET 2024 Eligibility Criteria

CUET 2024 Admit Card

CUET 2024 Exam Pattern

CUET 2024 FAQs

CUET 2024 Counselling

CUET 2024 Syllabus

CUET 2024 Result

CUET 2024 Answer Key

CUET 2024 Preparation

CUET CUTOFF

CUET 2024 Application Form

Talk to our expert
Resend OTP Timer =
By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy