•  
agra,ahmedabad,ajmer,akola,aligarh,ambala,amravati,amritsar,aurangabad,ayodhya,bangalore,bareilly,bathinda,bhagalpur,bhilai,bhiwani,bhopal,bhubaneswar,bikaner,bilaspur,bokaro,chandigarh,chennai,coimbatore,cuttack,dehradun,delhi ncr,dhanbad,dibrugarh,durgapur,faridabad,ferozpur,gandhinagar,gaya,ghaziabad,goa,gorakhpur,greater noida,gurugram,guwahati,gwalior,haldwani,haridwar,hisar,hyderabad,indore,jabalpur,jaipur,jalandhar,jammu,jamshedpur,jhansi,jodhpur,jorhat,kaithal,kanpur,karimnagar,karnal,kashipur,khammam,kharagpur,kochi,kolhapur,kolkata,kota,kottayam,kozhikode,kurnool,kurukshetra,latur,lucknow,ludhiana,madurai,mangaluru,mathura,meerut,moradabad,mumbai,muzaffarpur,mysore,nagpur,nanded,narnaul,nashik,nellore,noida,palwal,panchkula,panipat,pathankot,patiala,patna,prayagraj,puducherry,pune,raipur,rajahmundry,ranchi,rewa,rewari,rohtak,rudrapur,saharanpur,salem,secunderabad,silchar,siliguri,sirsa,solapur,sri-ganganagar,srinagar,surat,thrissur,tinsukia,tiruchirapalli,tirupati,trivandrum,udaipur,udhampur,ujjain,vadodara,vapi,varanasi,vellore,vijayawada,visakhapatnam,warangal,yamuna-nagar
Inverse Cosine

Inverse Cosine

Cosine of a function is given by: cos θ = adjacent side / hypotenuse. The inverse of a cosine function is given by:
Θ = cos-1 (adjacent side / hypotenuse)

We use the inverse cosine function to find the unknown angles in a right-angled triangle.

  • cos 0 = 1 ⇒ 0 = cos-1 (1)
  • cos π/3 = 1/2 ⇒ π/3 = cos-1 (1/2)
  • cos π/2 = 0 ⇒ π/2 = cos-1 (0)
  • cos π = -1 ⇒ π = cos-1 (-1)

Derivative of inverse cosine

We will derive the derivative of inverse cosine function using chain rule.

Let us assume y = cos-1x ⇒ cos y = x. Differentiating both sides, we get,
D (cos y) / dx = dx / dx
-sin y dy / dx = 1
dy / dx = -1 / sin y

We know, cos2 y + sin2 y = 1, we have,

sin y = √(1 - cos2 y) = √(1 - x2) [as cos y = x]

Substituting sin y = √(1 - x2) in (1), we have,

dy / dx = -1 / √(1 - x2)

Since x = -1, 1 makes the denominator √(1 - x2) equal to 0. Therefore, the derivative is not defined if x is -1 and 1.

We can conclude that the derivative of inverse cosine function is -1 / √(1 - x2), where -1 < x < 1.

Integration of inverse cosine function

We will find the integration of the inverse cosine function using integration by parts, ILATE (inverse, logarithmic, algebraic, trigonometric, and exponent).

∫cos-1 x = ∫cos-1 x · 1 dx

Using integration by parts,

∫f (x) . g (x) dx = f (x) ∫g (x) dx − ∫(f′ (x) ∫g (x) dx) dx + C

Here f (x) = cos-1 x and g (x) = 1.

∫cos-1 x · 1 dx = cos-1 x ∫1 dx - ∫ [d (cos-1 x) / dx ∫1 dx] dx + C

∫cos-1 x dx = cos-1 x . (x) - ∫ [-1 / √(1 - x²)] x dx + C

We will evaluate this integral ∫ [-1 / √(1 - x²)] x dx using substitution method. Let us assume 1 - x2 = u. Then -2x dx = du (or) x dx = -1/2 du.

∫cos-1 x dx = x cos-1x - ∫(-1/√u) (-1/2) du + C

= x cos-1 x - 1/2 ∫u-1/2 du + C

= x cos-1 x - (1/2) (u1/2 / (1/2)) + C

= x cos-1x - √u + C

= x cos-1x - √(1 - x²) + C

Therefore, ∫cos-1x dx = x cos-1x - √(1 - x²) + C

Properties of inverse cosines

  • sin-1 x + cos-1 x = π/2, when x ∈ [-1, 1]
  • cos (cos-1 x) = x only when x ∈ [-1, 1] (When x ∉ [-1, 1], cos (cos-1 x) is undefined)
  • ∫cos-1 x dx = x cos-1 x - √(1 - x²) + C
  • cos-1 (cos x) = x, only when x ∈ [0, π] (When x ∉ [0, π]. We can apply the trigonometric identities to find the equivalent angle of x that lies in [0, π])
  • d (cos-1 x)/dx = -1/√(1 - x2), -1 < x < 1
  • cos-1 (-x) = π - cos-1x
  • cos-1 (1/x) = sec-1 x, when |x| ≥ 1

Points to Ponder

  • Inverse cosine is not the same as (cos x)-1 as (cos x)-1 = 1/(cos x) = sec x.
  • cos-1 (-x) = π - cos-1x
  • ∫cos-1 x dx = x cos-1 x - √(1 - x²) + C
  • θ = cos-1[ (adjacent side) / (hypotenuse) ], θ ∈ [0, π]
  • d (cos-1 x) / dx = -1/√(1 - x2), -1 < x < 1

NEET Related Links

NEET Exam 2024

NEET 2024 Exam Dates

NEET 2024 Exam pattern

NEET 2024 Syllabus

NEET 2024 Eligibility Criteria

NEET 2024 Application

NEET UG Counselling

NEET FAQ

NEET UG Result

NEET 2024 Cut Off

Neet 2023 Toppers List Names & Rank

Neet Result 2023 Toppers list rank cut off

Neet Answer key Live Download PDF

Neet 2023 State Toppers List

JEE MAIN Related Links

JEE Main 2024

JEE Main Rank Predictor 2024

JEE Main College Predictor 2024

JEE Main 2024 Exam Dates

JEE Main 2024 Exam pattern

JEE Main 2024 Application

JEE Main 2024 Eligibility Criteria

JEE Main 2024 Syllabus

JEE Main 2024 Physics Syllabus

JEE Main 2024 Maths Syllabus

JEE Main 2024 Chemistry Syllabus

JEE Main 2024 Admit Card

JEE Main 2024 Counselling

JEE Main marks vs rank vs percentile

JEE Advanced Result 2023 live topper list

JEE Exam Preparation - How to calculate your rank jee

JEE Maths Syllabus - Important topics and weightage

JEE Advanced Related Links

JEE Advanced 2024 Exam Dates

JEE Advanced 2024 Application

JEE Advanced 2024 Eligibility Criteria

JEE Advanced 2024 Syllabus

JEE Advanced 2024 Maths Syllabus

JEE Advanced 2024 Physics Syllabus

JEE Advanced 2024 Chemistry Syllabus

JEE Advanced Exam Result

JEE Advanced Exam Dates

JEE Advanced Registration Dates

CUET Related Links

CUET 2024 Eligibility Criteria

CUET 2024 Admit Card

CUET 2024 Exam Pattern

CUET 2024 FAQs

CUET 2024 Counselling

CUET 2024 Syllabus

CUET 2024 Result

CUET 2024 Answer Key

CUET 2024 Preparation

CUET CUTOFF

CUET 2024 Application Form

Talk to our expert
Resend OTP Timer =
By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy