• Motivational
  • Board Exams
  • Exam Prep Tips
  • Science & Tech
Thursday, July 7, 2022
Aakash BYJU'S Blog
  • Aakash Home
  • MEDICAL
  • ENGINEERING
  • FOUNDATIONS
  • TOPPERS SPEAK
  • Exam
    • NEET
      • NEET 2022 Eligibility Criteria
      • NEET 2022 Dates
      • NEET 2022 Exam Pattern
      • NEET 2022 Syllabus
      • NEET 2022 Application
      • NEET Admit Card
      • NEET UG 2022 Result
      • NEET 2022 Cut Off
      • NEET FAQ
    • JEE Main
      • JEE Main 2022 Eligibility Criteria
      • JEE Main 2022 Dates
      • JEE Main 2022 Exam Pattern
      • JEE Main 2022 Syllabus
      • JEE Main 2022 Application
      • JEE Main 2022 Admit Card
      • JEE Main 2022 Counselling
    • JEE Advanced
      • JEE Advanced 2022 Eligibility Criteria
      • JEE Advanced 2022 Dates
      • JEE Advanced 2022 Application
      • JEE Advanced 2022 Syllabus
      • JEE Advanced 2022 Maths Syllabus
      • JEE Advanced 2022 Physics Syllabus
      • JEE Advanced 2022 Chemistry Syllabus
  • NCERT Solutions
No Result
View All Result
  • Aakash Home
  • MEDICAL
  • ENGINEERING
  • FOUNDATIONS
  • TOPPERS SPEAK
  • Exam
    • NEET
      • NEET 2022 Eligibility Criteria
      • NEET 2022 Dates
      • NEET 2022 Exam Pattern
      • NEET 2022 Syllabus
      • NEET 2022 Application
      • NEET Admit Card
      • NEET UG 2022 Result
      • NEET 2022 Cut Off
      • NEET FAQ
    • JEE Main
      • JEE Main 2022 Eligibility Criteria
      • JEE Main 2022 Dates
      • JEE Main 2022 Exam Pattern
      • JEE Main 2022 Syllabus
      • JEE Main 2022 Application
      • JEE Main 2022 Admit Card
      • JEE Main 2022 Counselling
    • JEE Advanced
      • JEE Advanced 2022 Eligibility Criteria
      • JEE Advanced 2022 Dates
      • JEE Advanced 2022 Application
      • JEE Advanced 2022 Syllabus
      • JEE Advanced 2022 Maths Syllabus
      • JEE Advanced 2022 Physics Syllabus
      • JEE Advanced 2022 Chemistry Syllabus
  • NCERT Solutions
No Result
View All Result
Aakash Institute Logo
No Result
View All Result

Home » Board Exams » What is photosynthesis? Revision notes from CBSE Class 10 Biology

What is photosynthesis? Revision notes from CBSE Class 10 Biology

Revision Notes for CBSE Class 10 Science solved by our expert teachers for academic year to help you score excellent marks.

by Team @Aakash
April 11th, 2022 1:30 PM IST
in Board Exams
0
What is Photosynthesis?

What is Photosynthesis?

0
SHARES
255
VIEWS
Share on FacebookShare on Twitter

Two Greek terms are combined to form photosynthesis. ‘Phos’ is a Greek word that signifies “light”, and ‘sunthesis’ means “combining.” This is defined as “combining with the aid of light.”

Photosynthesis is the conversion of sunlight, carbon dioxide (CO2), and water into food (sugars) and oxygen by plants, algae, and some microorganisms. Light energy is collected and used by green plants during the process to convert water, carbon dioxide, and minerals into oxygen and energy-rich organic molecules.

The phenomenon of photosynthesis is extremely significant for the sustenance of life on Earth. If photosynthesis is stopped, there will be little or no food or other organic materials on Earth. Most life would perish, and the Earth’s atmosphere would eventually be almost empty of gaseous oxygen. The whole ecological balance would be disrupted. 

Table of Contents
Meaning 
Equation
Process
Factors affecting Photosynthesis
Types
Importance of Photosynthesis
Conclusion
FAQs

Meaning

Photosynthesis produces glucose, which is subsequently utilised to power numerous cellular functions. This physio-chemical process produces oxygen as a byproduct.

Glucose molecules (or other sugars) are made from carbon dioxide and water in a light-driven process, with oxygen released. Glucose molecules give two essential resources to organisms: energy and fixed organic carbon.

  • Energy: ATP or Adenosine Triphosphate is a tiny energy-carrying molecule that fulfils the immediate energy demands of the cell. Processes like cellular respiration and fermentation produce this ATP. 
  • Fixed Carbon: Carbon from carbon dioxide (inorganic carbon) may be integrated into organic molecules, a process referred to as carbon fixation. The carbon in organic molecules is referred to as fixed carbon. During photosynthesis, the carbon that is fixed and integrated into sugars may be utilised to produce different types of organic compounds that organisms require. Industrial chemicals and other particles cause pollution if they settle on the leaf surface. This may clog stomatal pores, making it harder to absorb carbon dioxide.

Equation

6CO2  + 6H2O + Sunlight ———> C6H12O6  + 6O2

(Carbon Dioxide + Water + Sunlight ———> Glucose (simple sugar) + Oxygen)

Using light energy, six carbon dioxide molecules (CO2) mix with 12 water molecules (H2O). The final output is a single carbohydrate molecule (C6H12O6, or glucose) and six oxygen and water molecules each.

The different anoxygenic photosynthesis processes can also be summarised into a single formula:

[CH2O] + 2A + H2O = CO2 + 2H2A + Light Energy

The symbol A stands for a variable in the equation, while H2A stands for a potential electron donor. According to the medical and life sciences news site News Medical Life Sciences, “A” might stand for sulphur in the electron donor hydrogen sulphide (H2S).

Also visit our important concept pages to know more about this process.

Process

The phenomenon of photosynthesis consists of two stages, light reaction and dark reaction.

  • Light reaction: Light reaction occurs exclusively during the day in the presence of sunlight. The light-dependent reaction takes place in the thylakoid membranes of chloroplasts in plants. Inside the thylakoid are some structures surrounded by a membrane and are known as Photosystems. These photosystems play a key role in the whole process of photosynthesis. Photosystems are divided into two categories: photosystem I and photosystem II.

The light energy is converted to ATP and NADPH through light-dependent processes used in the second phase of photosynthesis. Two electron-transport chains, water, produce ATP and NADPH during light reactions.

Chemical Equation

2H2O + 2NADP+ + 3ADP + 3Pi → O2 + 2NADPH + 3ATP

  • Dark reaction: Carbon-fixing reaction is another name for a dark reaction. In a light-independent process, sugar molecules are generated from water and carbon dioxide molecules. This reaction occurs in the stroma of the chloroplast, where the light reaction’s NADPH and ATP products are used. Plants take carbon dioxide from the environment through stomata and enter the Calvin photosynthesis cycle. ATP and NADPH generated during the previous stage fuel the Calvin cycle and convert six carbon dioxide molecules into one sugar molecule, or glucose.

Chemical Equation

G3P + 2H+ + 6 NADP+ + 9 ADP + 8 PiT = 3CO2 + 6 NADPH + 5H2O + 9ATP

Factors affecting Photosynthesis

  1. Light Intensity: As the intensity of light rises, the rate of the process of photosynthesis increases as well. Low light intensity leads to a decreased rate of photosynthesis. The CO2 concentration is as follows: This rate is aided by a higher carbon dioxide concentration. Carbon dioxide in 300–400 PPM is usually sufficient for photosynthesis.
  2. Temperature: A temperature range of 25° to 35° C is required for effective photosynthesis. When the temperature is low, the rate of photosynthesis is limited by the number of molecular collisions between enzymes and substrates and when the temperature is high, enzymes are denatured.
  3. Water: Since water is such an indispensable component of photosynthesis, a lack of it might cause issues with carbon dioxide absorption. Due to a lack of water, stomatal openings do not keep the water stored inside.
  4. Pollution: Pollutants from industry and other particles may settle on the surface of the leaves. This blocks the pores of stomata, making it difficult to take in carbon dioxide.

Types

  1. Oxygenic photosynthesis is more prevalent than anoxygenic photosynthesis, occurring in algae, plants, and cyanobacteria. Light energy takes electrons from water (H2O) to CO2 to make carbohydrates during oxygenic photosynthesis. The CO2 is “reduced” or gains electrons, while the water is “oxidised” or loses electrons in this process. Carbohydrates and oxygen are both created. Oxygenic photosynthesis is similar to respiration but occurs oppositely. It absorbs CO2 generated by all breathing creatures and returns oxygen to the atmosphere. 
  2. Anoxygenic Photosynthesis: Anoxygenic photosynthesis does not create oxygen and uses electron donors other than water. Some examples that go through this process are phototrophic purple bacteria and green sulphur bacteria. 

Importance of Photosynthesis

Photosynthesis’s fundamental job is to transform solar energy into chemical energy and store it for future use. This mechanism is responsible for the majority of the planet’s life systems. It’s sobering to contemplate that our bodies’ energy traverses 93 million miles in less than eight minutes. It is also important to note that life has tapped into that energy stream. That energy is stored in biological systems for a brief period before continuing on its trip into the darkness of space.

Chloroplasts are the parts of a cell where photosynthesis takes place. Green plants absorb carbon, hydrogen, and oxygen from water and carbon dioxide molecules and recombine them into a new molecule called glucose. Of course, this occurs in the presence of sunshine. The bonds of the glucose molecule store energy. Glucose is a basic sugar that is easy to digest. 

Trees and other green plants, like animals, undertake to breathe, but they also practise photosynthesis. This is why ecologists classify green plants as “producers”, whereas most other living things are classified as “consumers.” 

Photosynthesis produces oxygen, while respiration produces carbon dioxide as a byproduct. Trees are frequently attributed as the planet’s primary source of oxygen, although this is incorrect. The major portion of the earth is covered with water, and humble algae’s collective photosynthesis is the genuine oxygen machine. Trees and forests are substantial oxygen generators. We could easily survive without trees and forests if the only advantage they provided was oxygen. Furthermore, some woods create more carbon dioxide than oxygen. Fortunately, the advantages of trees and forests are substantially more extensive than that.

Cellulose, a very complex sugar, makes up a large portion of the essential structural substance of plants and wood. Carbon, hydrogen, and oxygen molecules may be recombined to make a variety of useful compounds, including ethanol, fragrances, bioplastics, textile fibers, and a variety of industrial components. It is well acknowledged that sources derived from renewable living ecosystems have different benefits over fossil fuels derived from old materials.

Watch out our video on Photosynthesis.

Conclusion

Plants and photosynthesis are the foundation of fossil fuels, but they date back millions of years. Introducing large quantities of those molecules back into live ecosystems has several downsides that science has grown fairly adept at detecting and characterising. Trees, forests, forest soils, and forest products play a significant role in the environment in carbon cycling and the relative size of different carbon pools. Other elements circulate in the woods as well. Science, too, has a strong grip on these connections. 

Photosynthetic organisms might be used to produce clean-burning fuels like hydrogen. A research team from the University of Turku in Finland used green algae’s potential to make hydrogen. If green algae are subjected to dark and anaerobic situations before being exposed to light, they can create hydrogen for a few seconds.

Continued study of natural processes helps scientists identify new methods to use varied sources of renewable energy, and leveraging the power of photosynthesis is a reasonable first step towards making clean-burning, carbon-neutral fuels.

FAQs

1. What is Photosynthesis?

Photosynthesis is the phenomenon of creating oxygen and energy by green plants using carbon dioxide, sunlight, and water. It involves converting light energy into chemical reactions. The phenomenon of photosynthesis is largely responsible for maintaining the oxygen level in the ecosystem and supplying energy for survival on Earth.

The chemical equation for photosynthesis is as follows:

6CO2    +   6H2O  —>  C6H12O6  + 6O2

This equation implies that six carbon dioxide molecules and six water molecules combine to form a sugar molecule and six molecules of oxygen. All this reaction occurs in the presence of sunlight and chlorophyll. 

2. Name the factors affecting photosynthesis.

Several factors are responsible for affecting photosynthesis. Some of these are:

  • Sunlight
  • Water
  • Soil pH
  • Carbon dioxide in the atmosphere 
  • Climatic conditions 
  • Temperature 

3. What is the meaning of the Calvin Cycle?

The enzyme RuBisCO takes CO2 from the environment in the dark reactions, then utilises the newly generated NADPH to liberate three-carbon sugars, which are eventually combined to form sucrose and starch in a process known as the Calvin cycle.

Carbon fixation yields a three-carbon sugar intermediate, eventually transforming into final carbohydrate molecules. The simple carbon sugars created by photosynthesis are subsequently utilised to make various organic substances, such as cellulose, lipid and amino acid biosynthesis precursors, or as a source of energy in cellular respiration.

4. What do you mean by Kinetic Energy?

Kinetic energy refers to an item or particle’s energy due to its movement. When work is done on an item by exerting a net force, the object accelerates and accumulates kinetic energy. Kinetic energy is a characteristic of a moving item or particle that is determined by its mass and motion. Movement along a route from one location to another, rotation around an axis, vibration, or any combination of movements are possible.

5. How many different types of pigments are present in leaves?

There are four types of pigments present in the leaves. These are:

  • Chlorophyll a: This is of light to medium green colour
  • Chlorophyll b: This is of blue-green colour
  • Xanthophylls: This is of yellow colour
  • Carotenoids: This is of orange colour

6. What is chlorophyll?

Chlorophyll is the name of a green pigment present in the chloroplasts of plants and cyanobacteria’s mesosomes. It is a major substance used in photosynthesis as it allows plants to absorb energy from sunlight.

Chlorophyll is made up of two types of chlorophyll: 

  • chlorophyll a  
  • chlorophyll b.

 Other creatures that conduct photosynthesis have other types of chlorophyll, such as chlorophyll-c1, chlorophyll-c2, chlorophyll-d, and chlorophyll-f, in addition to green plants. 

Tags: CBSE Board examsCBSE Class 10CBSE Class 10 biology
Previous Post

3D Geometry and Vectors: Revision Notes For CBSE 12th Maths Term 2 Exam

Next Post

CBSE Class 10 Admit Card 2022: Check these important details

Next Post
Kerala Pareeksha Bhawan to conduct LSS, USS 2022 Exam on June 25

CBSE Class 10 Admit Card 2022: Check these important details

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

NEET 2020 Physics Important Notes on Electric Charges and Fields

NEET 2022 Physics Important Notes on Electric Charges and Fields

1 hour ago
5 Tips on Choosing the right college

5 Tips To Choosing The Perfect College For You

4 hours ago

Trending

10 Rules to follow if you want to crack NEET in the first attempt

NEET 2022 Chemistry Exam: Experts Recommend Revising These Chapters & Topics

2 months ago
JEE Main: Important chapters and topics

JEE Main 2022: Most Important Topics and Chapters

4 months ago

Popular

ANTHE'19 DPT

I registered for ANTHE 2019. How to access the Daily Practice Tests (DPT)?

3 years ago
This National Level Scholarship Exam offering upto 90% Scholarship for Students in VIII, IX & X Grades

This National Level Scholarship Exam offering upto 90% Scholarship for Students in VIII, IX & X Grades

2 years ago
Aakash National Talent Hunt Exam 2018 – A Perfect Start

Aakash National Talent Hunt Exam 2018 – A Perfect Start

4 years ago
COVID-19

The Unsung Heroes of the COVID-19 Pandemic

2 years ago

Popular Web Stories

  • How to Download JEE Main Answer key

  • CUET Mock Tests 2022

  • JEE Main Official Answer Key

  • NEET Exam City Intimation Slip

  • Types of Sequences

  • Process of Chlorination

  • Bleaching Powder Notes

  • Orthocenter of a Triangle

  • Shortest Wavelength of Paschen Series

  • How to Find Angle of Elevation
  • Recent Posts

    • NEET 2022 Physics Important Notes on Electric Charges and Fields
    • 5 Tips To Choosing The Perfect College For You
    • JEE Main 2022 Physics: 15 Days Revision Plan for Session 2 Exam
    • NATA 2022: NATA Test 2 Exam Today, Download Admit Card, Check Exam Day Guidelines
    • JEE Main 2022 Session 1 Provisional Answer Key Released, Here’s What You Need to Know

    Follow Us

    • NEET Mock Test
    • JEE Main Mock Test
    • NCERT Solutions
    • Other Text Book Solutions
    • Important Concepts
    • Ask And Answer

    Copyright © Aakash Institute

    No Result
    View All Result
    • Aakash Home
    • MEDICAL
    • ENGINEERING
    • FOUNDATIONS
    • TOPPERS SPEAK
    • Exam
      • NEET
        • NEET 2022 Eligibility Criteria
        • NEET 2022 Dates
        • NEET 2022 Exam Pattern
        • NEET 2022 Syllabus
        • NEET 2022 Application
        • NEET Admit Card
        • NEET UG 2022 Result
        • NEET 2022 Cut Off
        • NEET FAQ
      • JEE Main
        • JEE Main 2022 Eligibility Criteria
        • JEE Main 2022 Dates
        • JEE Main 2022 Exam Pattern
        • JEE Main 2022 Syllabus
        • JEE Main 2022 Application
        • JEE Main 2022 Admit Card
        • JEE Main 2022 Counselling
      • JEE Advanced
        • JEE Advanced 2022 Eligibility Criteria
        • JEE Advanced 2022 Dates
        • JEE Advanced 2022 Application
        • JEE Advanced 2022 Syllabus
        • JEE Advanced 2022 Maths Syllabus
        • JEE Advanced 2022 Physics Syllabus
        • JEE Advanced 2022 Chemistry Syllabus
    • NCERT Solutions

    Copyright © Aakash Institute

    Login to your account below

    Forgotten Password?

    Fill the forms bellow to register

    All fields are required. Log In

    Retrieve your password

    Please enter your username or email address to reset your password.

    Log In