• Motivational
  • Board Exams
  • Exam Prep Tips
  • Science & Tech
Saturday, January 28, 2023
  • Login
Aakash BYJU'S Blog
  • Aakash Home
  • MEDICAL
  • ENGINEERING
  • FOUNDATIONS
  • TOPPERS SPEAK
  • Exam
    • NEET
      • NEET 2023 Eligibility Criteria
      • NEET 2023 Dates
      • NEET 2023 Exam Pattern
      • NEET 2023 Syllabus
      • NEET 2023 Application
      • NEET 2023 Admit Card
      • NEET UG 2023 Result
      • NEET 2023 Cut Off
      • NEET 2023 FAQ
    • JEE Main
      • JEE Main 2023 Eligibility Criteria
      • JEE Main 2023 Dates
      • JEE Main 2023 Exam Pattern
      • JEE Main 2023 Syllabus
      • JEE Main 2023 Application
      • JEE Main 2023 Admit Card
      • JEE Main 2023 Counselling
    • JEE Advanced
      • JEE Advanced 2023 Eligibility Criteria
      • JEE Advanced 2023 Dates
      • JEE Advanced 2023 Application
      • JEE Advanced 2023 Syllabus
      • JEE Advanced 2023 Maths Syllabus
      • JEE Advanced 2023 Physics Syllabus
      • JEE Advanced 2023 Chemistry Syllabus
  • NCERT Solutions
  • NEET PG
    • INI CET
No Result
View All Result
  • Aakash Home
  • MEDICAL
  • ENGINEERING
  • FOUNDATIONS
  • TOPPERS SPEAK
  • Exam
    • NEET
      • NEET 2023 Eligibility Criteria
      • NEET 2023 Dates
      • NEET 2023 Exam Pattern
      • NEET 2023 Syllabus
      • NEET 2023 Application
      • NEET 2023 Admit Card
      • NEET UG 2023 Result
      • NEET 2023 Cut Off
      • NEET 2023 FAQ
    • JEE Main
      • JEE Main 2023 Eligibility Criteria
      • JEE Main 2023 Dates
      • JEE Main 2023 Exam Pattern
      • JEE Main 2023 Syllabus
      • JEE Main 2023 Application
      • JEE Main 2023 Admit Card
      • JEE Main 2023 Counselling
    • JEE Advanced
      • JEE Advanced 2023 Eligibility Criteria
      • JEE Advanced 2023 Dates
      • JEE Advanced 2023 Application
      • JEE Advanced 2023 Syllabus
      • JEE Advanced 2023 Maths Syllabus
      • JEE Advanced 2023 Physics Syllabus
      • JEE Advanced 2023 Chemistry Syllabus
  • NCERT Solutions
  • NEET PG
    • INI CET
No Result
View All Result
Aakash Institute Logo
No Result
View All Result

Home » Aakash Coaching » What is an Atom and its Structure in chemistry?

    Talk to our expert



    Resend OTP

    By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy

    What is an Atom and its Structure in chemistry?

    Here is a detailed explanation on atom & its structure in Chemistry

    by Team @Aakash
    May 4, 2022, 12:30 PM IST
    in Aakash Coaching
    0
    What is the structure of an Atom?

    What is the structure of an Atom?

    0
    SHARES
    223
    VIEWS
    Share on FacebookShare on Twitter

    Atoms are the smallest unit of matter. It is the smallest unit in the matter that can be broken into smaller sub-parts with the application of energy. However, energy is sometimes released whenever an atom breaks into smaller sub-parts. It is also a small unit of matter consisting of chemical elements. The structure within an atom consists of a nucleus with a positively charged proton and a neutron surrounded by a cloud of electrons with a negative charge. The nucleus is smaller and thicker. A molecular force of attraction between these electrons, neutrons, and protons binds the sub-parts together within an atom. 

    Because of the nature of quantum mechanics, not a single image was completely satisfactory in imagining the various atomic elements, forcing physicists to use coherent atoms to describe different elements. Atomic electrons behave in a certain way as particles around the nucleus. In other words, electrons act as waves attached to the area around the nucleus. The distribution of each electron is defined by patterns of such waves known as orbitals. These orbital structures profoundly affect atomic behaviour, and their chemical properties are determined by orbital clusters known as shells.

    This article begins with the complete structure of the atomic structure and the particles and forces that make up it. This framework is a historical study of the most powerful atomic concepts developed. See also subatomic particles for more information on nuclear structure and basic particles.

    Table of Contents
    Atomic Structure
    Atomic particles
    Nucleus
    Electrons 
    Protons 
    Neutrons 
    Atomic Mass
    Atomic Volume
    Atomic Models/Ideas
    Dalton’s Atomic Theory
    Thomson Atomic Model
    Rutherford Atomic Theory
    FAQs

    Atomic Structure

    Atomic structure refers to the structure within an atom, which is the smallest unit of matter, consisting of a nucleus in the centre, protons (positively charged), and neutrons (neutral). Electrons, which are negatively charged particles, revolve around the nucleus.

    The structure of atoms and quantum machines has a long history, dating to Democritus, who first suggested that matter be made of atoms. Studying the structure of an atom provides a wealth of information about the whole process of chemical reactions, bonds, and structures. During the 1800s, John Dalton proposed the first theory of atomic science.

    Atomic Particles

    Atoms have three basic particles: protons, electrons, and neutrons. Protons (positively charged) and neutrons are found in the nucleus (centre) of the atom (charged). Electrons surround the outside of the atom, called electron shells (negatively charged). Atoms have different properties depending on how these particles are arranged and how many are present. For example, there is one proton, an electron, and no neutrons in the hydrogen (H) atom. This makes hydrogen react differently than other elements, such as oxygen and nitrogen. 

    Nucleus

    According to the American Institute of Physics, Ernest Rutherford, a New Zealand physicist, discovered the nucleus in 1911. Rutherford proposed the term proton for atomic-charged charge cells in 1920. He also suggested the existence of neutral particles within the nucleus, which was confirmed in 1932 by James Chadwick, a British physicist and student of Rutherford.

    According to Chemistry LibreTexts, the nucleus of an atom contains almost all of its mass. The nucleus and neutron protons have the same weight (proton gradually) and the same angular force or spinning.

    Electrons

    Electrons are much tinier than protons and neutrons, 1,800 times smaller than any other. According to Jefferson Lab, electrons account for about 0.054 percent of their neutron weight.

    According to the Science History Institute, the electron was discovered in 1897 by British physicist Joseph John (J.J.) Thomson. Electrons are negatively charged and attached to the atom due to molecular forces of attraction to the positive protons. They were originally called “corpuscles.” In the 1920s, Austrian physicist Erwin Schrödinger proposed that electrons revolve around the atomic nucleus in orbitals. Today, this topic is commonly referred to as a quantum or electron cloud model. The inner orbitals of the atom are round, but the outer orbitals are much more complex.

    Atomic electron suspension refers to the position of electrons in a normal atom. According to the Los Alamos National Laboratory, chemists can predict atomic properties such as stability, boiling point, and conductivity using electron configuration and physics principles.

    Protons

    Protons are fine particles found in the nuclei of an atom. Rutherford discovered them during his research in cathode-ray tubes between 1911 and 1919. According to the Jefferson Lab, protons account for 99.86% of their neutron weight.

    Every element has a different number of protons in its atom. For example, carbon atoms have six protons, one hydrogen atom, and eight oxygen atoms. The number of protons in an atom is the element’s atomic number. The number of protons also concludes the chemical behaviour of the element. 

    Neutrons

    According to the American Physical Society, Rutherford proposed the existence of neutrons in 1920, and Chadwick discovered them in 1932. Neutrons are found when atoms are bombarded with a tiny layer of beryllium. A neutron, a free subatomic particle, was released during that experiment.

    Neutrons are uncharged particles found in all atomic nuclei (except hydrogen). Neutron weight is slightly greater than the proton. Neutrons are made up of quarks – one “high” quark (with 2/3 charge) and two “low” quarks (each with a one-third charge).

    Atomic Mass

    Protons and neutrons weigh the same, about 1.67 10-24 grams. A unit of weight of one atom (AMU) or one Dalton is the way scientists describe this amount of weight. Protons are positively charged, while neutrons are absent despite their uniform weight. As a result, the number of neutrons in an atom affects its weight but not its charge.

    Electrons weigh less than protons, weighing only 9.11 10-28 grams, or about 100 percent of atomic unit weight. As a result, they contribute a little to the total atomic weight of the element. When calculating the weight of an atom, it is common to ignore the weight of an electron and to calculate the atomic size only by the number of protons and neutrons.

    Electrons have a major impact on the charge of the atom as the charge of each electron is equal. These charges are indicated by the “+1” and “-1” scientific symbols. The number of electrons orbiting the nucleus in a neutral atom equals the number of protons inside the nucleus. Charges (negative and positive) cancel out some of these atoms, resulting in an atom that has no total charge.

    Atomic Volume

    After calculating the size of protons, neutrons, and electrons, most of the atomic mass — more than 99 percent — is actually in space. Although there is plenty of space, solid objects do not simply transcend one another. Because the electrons around all the atoms are badly hit, they chase each other away, preventing atoms from taking the same place. 

    Atomic Models/Ideas

    Using atomic models, many scientists have been trying to explain the atomic structure since the 18th and 19th centuries. Each of these types had its advantages and disadvantages and was essential for developing the modern atomic model. Scientists like John Dalton, J.J. Thomson, Ernest Rutherford, and Niels Bohr played a vital role in demonstrating their hypotheses regarding atomic structure. This section discusses their views on the structure of the atom.

    Dalton’s Atomic Theory

    According to English chemist John Dalton, all objects contain indivisible and indestructible atoms. He also said that although all the atoms of the same element were the same, atoms of different elements differ in size.

    In Dalton’s view of atoms, chemical reactions involve reorganising atoms to produce products. According to Dalton’s postulates, the atomic structure comprises atoms, tiny particles that are sensitive to chemical reactions.

    The theories of his theory are as follows:

    1. Atoms are the layers of everything.
    2. Atoms are inseparable.
    3. Certain elements contain one type of atom.
    4. Each atom has its own fixed weight, which varies according to the element.
    5. During a chemical reaction, the atoms are rearranged.
    6. Atoms cannot be made or destroyed, but they can be transformed from one form to another.
    7. Dalton’s atomic theory accurately described the Chemical Reaction Laws, particularly the Rules for Mass Conservation, Continuous Structures, and Multi-Levels.

    Disadvantages of Dalton’s Atomic Theory

    The theory could not explain the existence of isotopes. Nothing about the atomic structure was sufficiently explained. Later, scientists discovered particles inside the atom that indicate that atoms are separated.

    Thomson Atomic Model

    In the early 1900s, English chemist Sir Joseph John Thomson proposed a model of the atomic structure.

    Sir Joseph John Thomson was later awarded the Nobel Prize in Physics for his “electron.” His research is based on a study known as the cathode ray experiment.

    Cathode Ray Experiment

    1. Thomson described the atomic structure as a positively-charged ring with electrons with incorrect charges embedded in it based on his cathode-ray test results.
    2. The “plum pudding model” is named because it can be seen as a plum pudding dish. The pudding represents a positively-charged atom, and the plum pieces represent electrons.
    3. Thomson’s atomic structure elevated atoms as neutral, with equal amounts of charge and negative chargers.

    Thomson’s Atomic Structure Limitations: Thomson’s atomic model does not define atomic stability. Moreover, discovering new subatomic particles could not be incorporated into his atomic model.

    Rutherford Atomic Theory

    Rutherford, student of J. J. Thomson modified the atomic process by acquiring another tiny atomic particle known as the “Nucleus.” Alpha ray scattering tests served as the basis for his atomic model.

    Alpha Ray Scattering Experiment

    1. Rutherford summarised the vast majority of the space inside the atom as empty because most of the radiation passed through during the experiment he performed.
    2. A few rays have been shown due to the disgust of its good charging with some good charging inside the atom.
    3. Due to the strong and positive charge in the centre of the atom, 1 / 1000th of the radiation is strongly diverted. He referred to this fine solid charge as the “nucleus.”
    4. He argued that the nucleus contains most of the charge and the atom’s weight.

    Limitations of Rutherford Atomic Model Limitations: If electrons revolve around the nucleus, they will use force, and that force will be used against gravitational forces from the nucleus, and over time, they will lose all of their energy and fall into the nucleus. Hence, the nucleus’s atomic stability is not defined. When electrons orbit the nucleus, the expected spectrum continues. However, what we see is a line spectrum.

    FAQs

    1. What is an atom?

    The atom is the fundamental unit of matter in the universe. Atoms are extremely small particles that are made up of even smaller particles. The fundamental particles which make an atom are neutrons, protons, and electrons. Atoms combine with other atoms with a molecular force to form matter.

    2. What created atoms?

    Following the Big Bang 13.7 billion years ago, atoms were formed. Conditions became favourable for the formation of quarks and electrons as the hot, dense new universe cooled. Quarks combine to form protons and neutrons, fusing to form nuclei.

    3. Can we destroy atoms?

    Atoms are neither destroyed nor created. The bottom line is that matter exists in various forms throughout the universe. Matter does not appear or disappear in any physical or chemical change. Every living and nonliving thing on Earth, including you, is made up of atoms created in the stars (a very long time ago).

    4. Can atoms touch?

    Atoms, once again, never touch in the ordinary sense of the word because they lack hard boundaries. On the other hand, atoms touch in every other sense of the word “touch” that has meaning at the atomic level.

    5. Can atoms be subdivided?

    Atoms cannot be divided, created, or destroyed. Chemical compounds can be formed by combining atoms of different elements in simple whole-number ratios. Atoms are combined, separated, or rearranged during chemical reactions.

    6. Are cells and atoms the same?

    A biological unit is a cell, while a chemical unit is an atom. Furthermore, the main distinction between a cell and an atom is that a cell is composed of molecules, whereas atoms are composed of molecules. In addition, when it comes to the composition of these units, a typical cell contains cytoplasm, cell membrane, nucleus, and other components.

    Atoms are the smallest unit of matter. It is the smallest unit in the matter that can be broken into smaller sub-parts with the application of energy. However, energy is sometimes released whenever an atom breaks into smaller sub-parts. It is also a small unit of matter consisting of chemical elements. The structure within an atom consists of a nucleus with a positively charged proton and a neutron surrounded by a cloud of electrons with a negative charge. The nucleus is smaller and thicker. A molecular force of attraction between these electrons, neutrons and protons binds the sub-parts together within an atom. 

    Because of the nature of quantum mechanics, not a single image was completely satisfactory in imagining the various atomic elements, forcing physicists to use coherent atoms to describe different elements. Atomic electrons behave in a certain way as particles around the nucleus. In other words, electrons act as waves attached to the area around the nucleus. The distribution of each electron is defined by patterns of such waves known as orbitals. These orbital structures profoundly affect atomic behaviour, and their chemical properties are determined by orbital clusters known as shells.

    This article begins with the complete structure of the atomic structure and the particles and forces that make up it. This framework is a historical study of the most powerful atomic concepts developed. See also subatomic particles for more information on nuclear structure and basic particles.

    Table of Contents
    Atomic Structure
    Atomic particles
    Nucleus
    Electrons 
    Protons 
    Neutrons 
    Atomic Mass
    Atomic Volume
    Atomic Models/Ideas
    Dalton’s Atomic Theory
    Thomson Atomic Model
    Rutherford Atomic Theory
    FAQs

    Atomic Structure

    Atomic structure refers to the structure within an atom, which is the smallest unit of matter, consisting of a nucleus in the centre, protons (positively charged) and neutrons (neutral). Electrons, which are negatively charged particles, revolve around the nucleus.

    The structure of atoms and quantum machines has a long history, dating to Democritus, who first suggested that matter be made of atoms. Studying the structure of an atom provides a wealth of information about the whole process of chemical reactions, bonds, and structures. During the 1800s, John Dalton proposed the first theory of atomic science.

    Atomic Particles

    Atoms have three basic particles: protons, electrons, and neutrons. Protons (positively charged) and neutrons are found in the nucleus (centre) of the atom (charged). Electrons surround the outside of the atom, called electron shells (negatively charged). Atoms have different properties depending on how these particles are arranged and how many are present. For example, there is one proton, an electron, and no neutrons in the hydrogen (H) atom. This makes hydrogen react differently than other elements, such as oxygen and nitrogen. 

    Nucleus

    According to the American Institute of Physics, Ernest Rutherford, a New Zealand physicist, discovered the nucleus in 1911. Rutherford proposed the term proton for atomic-charged charge cells in 1920. He also suggested the existence of neutral particles within the nucleus, which was confirmed in 1932 by James Chadwick, a British physicist and student of Rutherford.

    According to Chemistry LibreTexts, the nucleus of an atom contains almost all of its mass. The nucleus and neutron protons have the same weight (proton gradually) and the same angular force or spinning.

    Electrons

    Electrons are much tinier than protons and neutrons, 1,800 times smaller than any other. According to Jefferson Lab, electrons account for about 0.054 percent of their neutron weight.

    According to the Science History Institute, the electron was discovered in 1897 by British physicist Joseph John (J.J.) Thomson. Electrons are negatively charged and attached to the atom due to molecular forces of attraction to the positive protons. They were originally called “corpuscles.” In the 1920s, Austrian physicist Erwin Schrödinger proposed that electrons revolve around the atomic nucleus in orbitals. Today, this topic is commonly referred to as a quantum or electron cloud model. The inner orbitals of the atom are round, but the outer orbitals are much more complex.

    Atomic electron suspension refers to the position of electrons in a normal atom. According to the Los Alamos National Laboratory, chemists can predict atomic properties such as stability, boiling point, and conductivity using electron configuration and physics principles.

    Protons

    Protons are fine particles found in the nuclei of an atom. Rutherford discovered them during his research in cathode-ray tubes between 1911 and 1919. According to the Jefferson Lab, protons account for 99.86% of their neutron weight.

    Every element has a different number of protons in its atom. For example, carbon atoms have six protons, one hydrogen atom, and eight oxygen atoms. The number of protons in an atom is the element’s atomic number. The number of protons also concludes the chemical behaviour of the element. 

    Neutrons

    According to the American Physical Society, Rutherford proposed the existence of neutrons in 1920, and Chadwick discovered them in 1932. Neutrons are found when atoms are bombarded with a tiny layer of beryllium. A neutron, a free subatomic particle, was released during that experiment.

    Neutrons are uncharged particles found in all atomic nuclei (except hydrogen). Neutron weight is slightly greater than the proton. Neutrons are made up of quarks – one “high” quark (with 2/3 charge) and two “low” quarks (each with a one-third charge).

    Atomic Mass

    Protons and neutrons weigh the same, about 1.67 10-24 grams. A unit of weight of one atom (AMU) or one Dalton is the way scientists describe this amount of weight. Protons are positively charged, while neutrons are absent despite their uniform weight. As a result, the number of neutrons in an atom affects its weight but not its charge.

    Electrons weigh less than protons, weighing only 9.11 10-28 grams, or about 100 percent of atomic unit weight. As a result, they contribute a little to the total atomic weight of the element. When calculating the weight of an atom, it is common to ignore the weight of an electron and to calculate the atomic size only by the number of protons and neutrons.

    Electrons have a major impact on the charge of the atom as the charge of each electron is equal. These charges are indicated by the “+1” and “-1” scientific symbols. The number of electrons orbiting the nucleus in a neutral atom equals the number of protons inside the nucleus. Charges (negative and positive) cancel out some of these atoms, resulting in an atom that has no total charge.

    Atomic Volume

    After calculating the size of protons, neutrons, and electrons, most of the atomic mass — more than 99 percent — is actually in space. Although there is plenty of space, solid objects do not simply transcend one another. Because the electrons around all the atoms are badly hit, they chase each other away, preventing atoms from taking the same place. 

    Atomic Models/Ideas

    Using atomic models, many scientists have been trying to explain the atomic structure since the 18th and 19th centuries. Each of these types had its advantages and disadvantages and was essential for developing the modern atomic model. Scientists like John Dalton, J.J. Thomson, Ernest Rutherford, and Niels Bohr played a vital role in demonstrating their hypotheses regarding atomic structure. This section discusses their views on the structure of the atom.

    Dalton’s Atomic Theory

    According to English chemist John Dalton, all objects contain indivisible and indestructible atoms. He also said that although all the atoms of the same element were the same, atoms of different elements differ in size.

    In Dalton’s view of atoms, chemical reactions involve reorganising atoms to produce products. According to Dalton’s postulates, the atomic structure comprises atoms, tiny particles that are sensitive to chemical reactions.

    The theories of his theory are as follows:

    1. Atoms are the layers of everything.
    2. Atoms are inseparable.
    3. Certain elements contain one type of atom.
    4. Each atom has its own fixed weight, which varies according to the element.
    5. During a chemical reaction, the atoms are rearranged.
    6. Atoms cannot be made or destroyed, but they can be transformed from one form to another.
    7. Dalton’s atomic theory accurately described the Chemical Reaction Laws, particularly the Rules for Mass Conservation, Continuous Structures, and Multi-Levels.

    Disadvantages of Dalton’s Atomic Theory

    The theory could not explain the existence of isotopes. Nothing about the atomic structure was sufficiently explained. Later, scientists discovered particles inside the atom that indicate that atoms are separated.

    Thomson Atomic Model

    In the early 1900s, English chemist Sir Joseph John Thomson proposed a model of the atomic structure.

    Sir Joseph John Thomson was later awarded the Nobel Prize in Physics for his “electron.” His research is based on a study known as the cathode ray experiment.

    Cathode Ray Experiment

    1. Thomson described the atomic structure as a positively-charged ring with electrons with incorrect charges embedded in it based on his cathode-ray test results.
    2. The “plum pudding model” is named because it can be seen as a plum pudding dish. The pudding represents a positively-charged atom, and the plum pieces represent electrons.
    3. Thomson’s atomic structure elevated atoms as neutral, with equal amounts of charge and negative chargers.

    Thomson’s Atomic Structure Limitations: Thomson’s atomic model does not define atomic stability. Moreover, discovering new subatomic particles could not be incorporated into his atomic model.

    Rutherford Atomic Theory

    Rutherford, student of J. J. Thomson modified the atomic process by acquiring another tiny atomic particle known as the “Nucleus.” Alpha ray scattering tests served as the basis for his atomic model.

    Alpha Ray Scattering Experiment

    1. Rutherford summarised the vast majority of the space inside the atom as empty because most of the radiation passed through during the experiment he performed.
    2. A few rays have been shown due to the disgust of its good charging with some good charging inside the atom.
    3. Due to the strong and positive charge in the centre of the atom, 1 / 1000th of the radiation is strongly diverted. He referred to this fine solid charge as the “nucleus.”
    4. He argued that the nucleus contains most of the charge and the atom’s weight.

    Limitations of Rutherford Atomic Model Limitations: If electrons revolve around the nucleus, they will use force, and that force will be used against gravitational forces from the nucleus, and over time, they will lose all of their energy and fall into the nucleus. Hence, the nucleus’s atomic stability is not defined. When electrons orbit the nucleus, the expected spectrum continues. However, what we see is a line spectrum.

    FAQs

    1. What is an atom?

    The atom is the fundamental unit of matter in the universe. Atoms are extremely small particles that are made up of even smaller particles. The fundamental particles which make an atom are neutrons, protons, and electrons. Atoms combine with other atoms with a molecular force to form matter.

    2. What created atoms?

    Following the Big Bang 13.7 billion years ago, atoms were formed. Conditions became favourable for the formation of quarks and electrons as the hot, dense new universe cooled. Quarks combine to form protons and neutrons, fusing to form nuclei.

    3. Can we destroy atoms?

    Atoms are neither destroyed nor created. The bottom line is that matter exists in various forms throughout the universe. Matter does not appear or disappear in any physical or chemical change. Every living and nonliving thing on Earth, including you, is made up of atoms created in the stars (a very long time ago).

    4. Can atoms touch?

    Atoms, once again, never touch in the ordinary sense of the word because they lack hard boundaries. On the other hand, atoms touch in every other sense of the word “touch” that has meaning at the atomic level.

    5. Can atoms be subdivided?

    Atoms cannot be divided, created, or destroyed. Chemical compounds can be formed by combining atoms of different elements in simple whole-number ratios. Atoms are combined, separated, or rearranged during chemical reactions.

    6. Are cells and atoms the same?

    A biological unit is a cell, while a chemical unit is an atom. Furthermore, the main distinction between a cell and an atom is that a cell is composed of molecules, whereas atoms are composed of molecules. In addition, when it comes to the composition of these units, a typical cell contains cytoplasm, cell membrane, nucleus, and other components.

    Tags: Structure of Atom
    Previous Post

    Maharashtra CET 2022 Postponed: Check the Complete Exam Schedule Here

    Next Post

    WBJEE 2022: Answer key to be released soon, here’s how to download

    Next Post
    TBJEE Answer Key 2022 Released: Objection window open until May 7

    WBJEE 2022: Answer key to be released soon, here's how to download

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    Contact form

      Talk to our expert



      Resend OTP

      By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy

      Recommended

      JEE Main 2023 Question Paper 29 January Shift-1

      JEE Main 2023 January 29 – Shift 1 Question Paper with Solutions

      Jan 27, 2023, 7:41 PM IST
      JEE Main 2023 January 28 - Shift 2 Chemistry Question Paper with Solutions

      JEE Main 2023 January 28 – Shift 2 Chemistry Question Paper with Solutions

      Jan 27, 2023, 7:30 PM IST

      Trending

      JEE Main 2022 Marks vs Rank vs Percentile

      JEE Main Marks vs Percentile vs Ranks

      Jan 27, 2023, 10:30 AM IST
      Top 10 Famous Indian Mathematicians and Their Inventions

      Top 10 Indian Mathematicians & Their Inventions

      Jan 26, 2023, 1:30 PM IST

      Popular

      ANTHE'19 DPT

      I registered for ANTHE 2019. How to access the Daily Practice Tests (DPT)?

      Jun 2, 2020, 12:11 PM IST
      This National Level Scholarship Exam offering upto 90% Scholarship for Students in VIII, IX & X Grades

      This National Level Scholarship Exam offering upto 90% Scholarship for Students in VIII, IX & X Grades

      Sep 2, 2022, 6:14 PM IST
      Aakash National Talent Hunt Exam 2018 – A Perfect Start

      Aakash National Talent Hunt Exam 2018 – A Perfect Start

      Jun 2, 2020, 1:10 PM IST
      COVID-19

      The Unsung Heroes of the COVID-19 Pandemic

      Jun 25, 2020, 1:02 PM IST

      Popular Web Stories

    • Documents Required for Medical Admission

    • Dilute vs Concentrated Solution

    • ANTHE Scholarship 2022

    • Destruction of Colloids

    • ANTHE Books

    • Top Medical Colleges in UP

    • Non Biodegradable Items

    • Sum of Circumference of Circles

    • Dithecous Anther

    • Isomers with Molecular Formula c5h12
    • Recent Posts

      • JEE Main 2023 January 29 – Shift 1 Question Paper with Solutions
      • JEE Main 2023 January 28 – Shift 2 Chemistry Question Paper with Solutions
      • JEE Main 2023 Maths January 28 Shift 2 Question Papers and Solutions
      • JEE Main 2023 Physics January 28 Shift 2 Question Paper and Solutions
      • JEE Main 2023 January 28 Shift 2 Question Papers and Solutions

      Follow Us

      • NCERT Solutions for Class 6
      • NCERT Solutions for Class 7
      • NCERT Solutions for Class 8
      • NCERT Solutions for Class 9
      • NCERT Solutions for Class 10
      • NCERT Solutions for Class 11
      • NCERT Solutions for Class 12
      • NCERT Solutions
      • Other Text Book Solutions
      • Important Concepts
      • Ask And Answer
      • Aakash Answers

      Copyright © Aakash Institute

      No Result
      View All Result
      • Aakash Home
      • MEDICAL
      • ENGINEERING
      • FOUNDATIONS
      • TOPPERS SPEAK
      • Exam
        • NEET
          • NEET 2023 Eligibility Criteria
          • NEET 2023 Dates
          • NEET 2023 Exam Pattern
          • NEET 2023 Syllabus
          • NEET 2023 Application
          • NEET 2023 Admit Card
          • NEET UG 2023 Result
          • NEET 2023 Cut Off
          • NEET 2023 FAQ
        • JEE Main
          • JEE Main 2023 Eligibility Criteria
          • JEE Main 2023 Dates
          • JEE Main 2023 Exam Pattern
          • JEE Main 2023 Syllabus
          • JEE Main 2023 Application
          • JEE Main 2023 Admit Card
          • JEE Main 2023 Counselling
        • JEE Advanced
          • JEE Advanced 2023 Eligibility Criteria
          • JEE Advanced 2023 Dates
          • JEE Advanced 2023 Application
          • JEE Advanced 2023 Syllabus
          • JEE Advanced 2023 Maths Syllabus
          • JEE Advanced 2023 Physics Syllabus
          • JEE Advanced 2023 Chemistry Syllabus
      • NCERT Solutions
      • NEET PG
        • INI CET

      Copyright © Aakash Institute

      Welcome Back!

      Login to your account below

      Forgotten Password?

      Retrieve your password

      Please enter your username or email address to reset your password.

      Log In