•  
agra,ahmedabad,ajmer,akola,aligarh,ambala,amravati,amritsar,aurangabad,ayodhya,bangalore,bareilly,bathinda,bhagalpur,bhilai,bhiwani,bhopal,bhubaneswar,bikaner,bilaspur,bokaro,chandigarh,chennai,coimbatore,cuttack,dehradun,delhi ncr,dhanbad,dibrugarh,durgapur,faridabad,ferozpur,gandhinagar,gaya,ghaziabad,goa,gorakhpur,greater noida,gurugram,guwahati,gwalior,haldwani,haridwar,hisar,hyderabad,indore,jabalpur,jaipur,jalandhar,jammu,jamshedpur,jhansi,jodhpur,jorhat,kaithal,kanpur,karimnagar,karnal,kashipur,khammam,kharagpur,kochi,kolhapur,kolkata,kota,kottayam,kozhikode,kurnool,kurukshetra,latur,lucknow,ludhiana,madurai,mangaluru,mathura,meerut,moradabad,mumbai,muzaffarpur,mysore,nagpur,nanded,narnaul,nashik,nellore,noida,palwal,panchkula,panipat,pathankot,patiala,patna,prayagraj,puducherry,pune,raipur,rajahmundry,ranchi,rewa,rewari,rohtak,rudrapur,saharanpur,salem,secunderabad,silchar,siliguri,sirsa,solapur,sri-ganganagar,srinagar,surat,thrissur,tinsukia,tiruchirapalli,tirupati,trivandrum,udaipur,udhampur,ujjain,vadodara,vapi,varanasi,vellore,vijayawada,visakhapatnam,warangal,yamuna-nagar

RD Sharma Solutions for Class 11 Maths Chapter 16: Permutations

"The number of potential 'r' object combinations from a collection of 'n' objects." Permutations are used for lists (where order matters), and Combinations are used for categories (where the order is irrelevant). The word "factorial" and its notation will be introduced in this chapter. Our explanations emphasise several shortcut tips and diagrams to illustrate the exercise problems in simple terms. Subject experts have broken down complex problems into basic steps that are easier to comprehend by the students. RD Sharma Class 11 Maths Solutions will assist students in gaining a thorough understanding of the subject.

A permutation is a simultaneous arrangement of many objects in a specified order, whereas a combination is a collection of elements where the order is unimportant. This chapter covers the fundamental idea of counting, factorial of any number n given by n!, permutations, combinations, formulae, derivation and linkages, and basic applications. The factorial concept translates to the product of all non-negative integers less than or equal to a particular positive integer, represented by that integer and an exclamation mark in mathematics. n!= n* (n-1)* (n-2) * (n-3) * ………. *3 * 2 *1

As a result, factorial seven is expressed as 5! which means 5 x 4 x 3 x 2 x 1. It is important to note that the factorial zero is equal to one. The Rd Sharma textbook contains 5 exercises on the chapter permutation, and every question in the exercises is very important as the chapter forms the basis of topics such as statistics, probability and highly technical fields of analytics and forecasting. In addition, the chapter includes topics such as the basic concepts of counting, the concept of permutation as a form of variation, permutation of non-distinct objects, conditional permutation and the basic understanding of word problems based on permutation.

 

Download PDF For FREE

 

Key features of Aakash institute RD Sharma solutions for class 11th Maths Chapter 16- Permutations

  • Akash Institute offers students step-by-step solutions that are arranged in a structured order for them to practice.
  • The problem can be solved within a reasonable amount of time with detailed and accurate solutions.
  • Students can easily understand solutions prepared by experts in the simple, well- versed language. Students can practice with the help of RD Sharma solutions by the Aakash institute to solve similar questions on their own.
Talk to our expert
Resend OTP Timer =
By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy