•  
agra,ahmedabad,ajmer,akola,aligarh,ambala,amravati,amritsar,aurangabad,ayodhya,bangalore,bareilly,bathinda,bhagalpur,bhilai,bhiwani,bhopal,bhubaneswar,bikaner,bilaspur,bokaro,chandigarh,chennai,coimbatore,cuttack,dehradun,delhi ncr,dhanbad,dibrugarh,durgapur,faridabad,ferozpur,gandhinagar,gaya,ghaziabad,goa,gorakhpur,greater noida,gurugram,guwahati,gwalior,haldwani,haridwar,hisar,hyderabad,indore,jabalpur,jaipur,jalandhar,jammu,jamshedpur,jhansi,jodhpur,jorhat,kaithal,kanpur,karimnagar,karnal,kashipur,khammam,kharagpur,kochi,kolhapur,kolkata,kota,kottayam,kozhikode,kurnool,kurukshetra,latur,lucknow,ludhiana,madurai,mangaluru,mathura,meerut,moradabad,mumbai,muzaffarpur,mysore,nagpur,nanded,narnaul,nashik,nellore,noida,palwal,panchkula,panipat,pathankot,patiala,patna,prayagraj,puducherry,pune,raipur,rajahmundry,ranchi,rewa,rewari,rohtak,rudrapur,saharanpur,salem,secunderabad,silchar,siliguri,sirsa,solapur,sri-ganganagar,srinagar,surat,thrissur,tinsukia,tiruchirapalli,tirupati,trivandrum,udaipur,udhampur,ujjain,vadodara,vapi,varanasi,vellore,vijayawada,visakhapatnam,warangal,yamuna-nagar
Trigonometric Equations

Trigonometric Equations

 

Trigonometry is a branch of mathematics that deals with right-angled triangles. There are two major trigonometric functions: sine and cosine. Every other trigonometric function can be derived from these two.

Sine = adjacent side / hypotenuse
Cosine = base / hypotenuse
Tangent = sine / cosine
Cosecant = 1 / sine
Secant = 1 / cosine
Cotangent = 1 / tangent

There are several Pythagoras formulae and identities in trigonometry (check table of trigonometry). We will learn about trigonometric formulae, which are also known as trigonometric equations. 

Trigonometric functions according to quadrants

First Quadrant:

  • sin (π/2 – θ) = cos θ
  • cos (π/2 – θ) = sin θ
  • sin (π/2 + θ) = cos θ
  • cos (π/2 + θ) = – sin θ

Second Quadrant:

  • sin (3π/2 – θ) = – cos θ
  • cos (3π/2 – θ) = – sin θ
  • sin (3π/2 + θ) = – cos θ
  • cos (3π/2 + θ) = sin θ

Third Quadrant:

  • sin (π – θ) = sin θ
  • cos (π – θ) = – cos θ
  • sin (π + θ) = – sin θ
  • cos (π + θ) = – cos θ

Fourth Quadrant:

  • sin (2π – θ) = – sin θ
  • cos (2π – θ) = cos θ
  • sin (2π + θ) = sin θ
  • cos (2π + θ) = cos θ

Trigonometric equations involving angles

  • sin(90° − x) = cos x
  • cos(90° − x) = sin x
  • tan(90° − x) = cot x
  • cot(90° − x) = tan x
  • sec(90° − x) = cosec x
  • cosec(90° − x) = sec x

Trigonometric equations for sum and difference of angles

  • sin(x + y) = sin(x) cos (y) + cos(x) sin(y)
  • cos(x + y) = cos(x) cos(y) - sin(x) sin(y)
  • tan(x + y) = (tan x + tan y)/(1 - tan x • tan y)
  • sin(x – y) = sin(x) cos(y) - cos(x) sin(y)
  • cos(x – y) = cos(x) cos(y) + sin(x) sin(y)
  • tan(x − y) = (tan x - tan y)/(1 + tan x • tan y)

Trigonometric equations for half angles

  • sin (x/2) = ±√[(1 - cos x)/2]
  • cos (x/2) = ± √[(1 + cos x)/2]
  • tan (x/2) = ±√[(1 - cos x)/(1 + cos x)]
  • tan (x/2) = ±√[(1 - cos x)(1 - cos x)/(1 + cos x)(1 - cos x)]
  • tan (x/2) = ±√[(1 - cos x)²/(1 - cos²x)]
  • tan (x/2) = (1 - cos x)/sin x

Trigonometric equations for double angles

  • sin (2x) = 2 sin(x) • cos(x) = [2 tan x/(1 + tan² x)]
  • cos (2x) = cos²(x) - sin²(x) = [(1 - tan² x)/(1 + tan² x)]
  • cos (2x) = 2 cos²(x) - 1 = 1 - 2 sin²(x)
  • tan (2x) = [2 tan(x)]/ [1 - tan²(x)]
  • sec (2x) = sec² x/(2 - sec² x)
  • cosec (2x) = (sec x • cosec x)/2

Trigonometric equations for triple angles

  • sin 3x = 3 sin x - 4 sin³x
  • cos 3x = 4 cos³x - 3 cos x
  • tan 3x = [3 tanx - tan³x]/[1 - 3 tan²x]

Trigonometric equations for product of functions

  • sin x ⋅ cos y = [sin(x + y) + sin(x − y)]/2
  • cos x ⋅ cos y = [cos(x + y) + cos(x − y)]/2
  • sin x ⋅ sin y = [cos(x − y) − cos(x + y)]/2

Trigonometric equations for sum of functions

  • sin x + sin y = 2 [sin((x + y)/2) cos((x − y)/2)]
  • sin x – sin y = 2 [cos((x + y)/2) sin((x − y)/2)]
  • cos x + cos y = 2 [cos((x + y)/2) cos((x − y)/2)]
  • cos x – cos y = −2 [sin((x + y)/2) sin((x − y)/2)]

Trigonometric equations for inverse functions

  • sin⁻¹ (-x) = -sin⁻¹ x
  • cos⁻¹ (-x) = π - cos⁻¹ x
  • tan⁻¹ (-x) = -tan⁻¹ x
  • cosec⁻¹ (-x) = -cosec⁻¹ x
  • sec⁻¹ (-x) = π - sec⁻¹ x
  • cot⁻¹ (-x) = π - cot⁻¹ x

Aakashians JEE Topper

Aakashians NEET UG 2023 Champions Again

Historic Results 2023 Aakashians Qualified +1 Lakh

JEE Advanced 2023

JEE Advanced 2023 Stats

JEE Advanced 2022 Topper

NEET Related Links

NEET Exam 2024

NEET 2024 Exam Dates

NEET 2024 Exam pattern

NEET 2024 Syllabus

NEET 2024 Eligibility Criteria

NEET 2024 Application

NEET UG Counselling

NEET FAQ

NEET UG Result

NEET 2024 Cut Off

Neet 2023 Toppers List Names & Rank

Neet Result 2023 Toppers list rank cut off

Neet Answer key Live Download PDF

Neet 2023 State Toppers List

JEE MAIN Related Links

JEE Main 2024

JEE Main Rank Predictor 2024

JEE Main College Predictor 2024

JEE Main 2024 Exam Dates

JEE Main 2024 Exam pattern

JEE Main 2024 Application

JEE Main 2024 Eligibility Criteria

JEE Main 2024 Syllabus

JEE Main 2024 Physics Syllabus

JEE Main 2024 Maths Syllabus

JEE Main 2024 Chemistry Syllabus

JEE Main 2024 Admit Card

JEE Main 2024 Counselling

JEE Main marks vs rank vs percentile

JEE Advanced Result 2023 live topper list

JEE Exam Preparation - How to calculate your rank jee

JEE Maths Syllabus - Important topics and weightage

JEE Advanced Related Links

JEE Advanced 2024 Exam Dates

JEE Advanced 2024 Application

JEE Advanced 2024 Eligibility Criteria

JEE Advanced 2024 Syllabus

JEE Advanced 2024 Maths Syllabus

JEE Advanced 2024 Physics Syllabus

JEE Advanced 2024 Chemistry Syllabus

JEE Advanced Exam Result

JEE Advanced Exam Dates

JEE Advanced Registration Dates

CUET Related Links

CUET 2024 Eligibility Criteria

CUET 2024 Admit Card

CUET 2024 Exam Pattern

CUET 2024 FAQs

CUET 2024 Counselling

CUET 2024 Syllabus

CUET 2024 Result

CUET 2024 Answer Key

CUET 2024 Preparation

CUET CUTOFF

CUET 2024 Application Form

Talk to our expert
Resend OTP Timer =
By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy