 # JEE MAIN 2022 MATHS SYLLABUS

Every year, the National Testing Agency sets and releases the JEE Syllabus for all subjects namely Physics, Chemistry, and Maths. For JEE Main 2022, the syllabus can be downloaded from the official website of the NTA. The JEE Main 2022 Syllabus for Maths subject is also provided below for the reference of students who are preparing for JEE Main 2022.

## Unit 1: Sets, Relations and Functions

• Sets and their representation.
• Union, intersection, and complement of sets and their algebraic properties.
• Powerset.
• Relation, Types of relations, equivalence relations.
• Functions; one-one, into and onto functions, the composition of functions.

## Unit 2: Complex Numbers and Quadratic Equations

• Complex numbers as ordered pairs of reals.
• Representation of complex numbers in the form (a+ib) and their representation in a plane, Argand diagram.
• Algebra of complex numbers, modulus and argument (or amplitude) of a complex number, square root of a complex number.
• Triangle inequality.
• Quadratic equations in real and complex number system and their solutions.
• The relation between roots and coefficients, nature of roots, the formation of quadratic equations with given roots.

## Unit 3: Matrices and Determinants

• Matrices: Algebra of matrices, types of matrices, and matrices of order two and three.
• Determinants: Properties of determinants, evaluation of determinants, the area of triangles using determinants.
• Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations.
• Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices.

## Unit 4: Permutations and Combinations

• The fundamental principle of counting.
• Permutation as an arrangement and combination as a selection.
• The meaning of P (n,r) and C (n,r). Simple applications.

## Unit 5: Mathematical Induction

• The principle of Mathematical Induction and its simple applications.

## Unit 6: Binomial Theorem

• Binomial theorem for a positive integral index.
• General term and middle term.
• Properties of Binomial coefficients and simple applications.

## Unit 7: Sequence and Series

• Arithmetic and Geometric progressions, insertion of arithmetic.
• Geometric means between two given numbers.
• The relation between A.M. and G.M.
• Sum up to n terms of special series: Sn, Sn2, Sn3.
• Arithmetico Geometric progression.

## Unit 8: Limit, Continuity and Differentiability

• Real-valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic and exponential functions, inverse functions.
• Graphs of simple functions.
• Limits, continuity, and differentiability.
• Differentiation of the sum, difference, product, and quotient of two functions.
• Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order up to two.
• Rolle’s and Lagrange’s Mean Value Theorems.
• Applications of derivatives: Rate of change of quantities, monotonic increasing and decreasing functions, Maxima, and minima of functions of one variable, tangents, and normals.

## Unit 9: Integral Calculus

• Integral as an antiderivative.
• Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions.
• Integration by substitution, by parts, and by partial fractions.
• Integration using trigonometric identities.
• Integral as limit of a sum.
• Evaluation of simple integrals
• Fundamental Theorem of Calculus.
• Properties of definite integrals, evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.

## Unit 10: Differential Equations

• Ordinary differential equations, their order, and degree.
• Formation of differential equations.
• The solution of differential equations by the method of separation of variables.
• The solution of homogeneous and linear differential equations.

## Unit 11: Coordinate Geometry

• Cartesian system of rectangular coordinates in a plane, distance formula, section formula, locus, and its equation, translation of axes, the slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes.
• Straight lines: Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrence of three lines.
• Distance of a point from a line, equations of internal and external bisectors of angles between two lines, coordinates of the centroid, orthocentre, and circumcentre of a triangle, equation of the family of lines passing through the point of intersection of two lines.
• Circles, conic sections: Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle when the endpoints of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent.
• Sections of cones, equations of conic sections (parabola, ellipse, and hyperbola) in standard forms, condition for y = mx + c to be a tangent and point (s) of tangency.

## Unit 12: 3D Geometry

• Coordinates of a point in space, the distance between two points.
• Section formula, direction ratios and direction cosines, the angle between two intersecting lines.
• Skew lines, the shortest distance between them and its equation.
• Equations of a line and a plane in different forms, the intersection of a line and a plane, coplanar lines.

## Unit 13: Vector Algebra

• Scalars and Vectors. Addition, subtraction, multiplication and division of vectors.
• Vector’s Components in 2D and 3D space.
• Scalar products and vector products, triple product.

## Unit 14: Statistics and Probability

• Measures of Dispersion: Calculation of mean, mode, median, variance, standard deviation, and mean deviation of ungrouped and grouped data.
• Probability: Probability of events, multiplication theorems, addition theorems, Baye’s theorem, Bernoulli trials, Binomial distribution and probability distribution.

## Unit 15: Trigonometry

• Identities of Trigonometry and Trigonometric equations.
• Functions of Trigonometry.
• Properties of Inverse trigonometric functions.
• Problems on Heights and Distances.

## Unit 16: Mathematical Reasoning

• Statements and logical operations: or, and, implied by, implies, only if and if.
• Understanding of contradiction, tautology, contrapositive and converse.

## JEE Main Maths Important Topics

Maths subject has a weightage of 100 marks in JEE Main examination. It's one of the most crucial subjects to score well in the JEE Main exam. Students appearing for the JEE Main exam must follow the right study plan to crack the exam with good scores. Students must refrain from wasting their time on irrelevant concepts or topics and focus on understanding the core concepts. To help students revise important Maths concepts for JEE Main exam, we have compiled a list of topics from the JEE Main Maths syllabus, check it below:

Aakash JEE coaching centres are present across the nation. With 275+ branches across the nation and a student count of 2,50,000+, Aakash is one of the leaders in the field of imparting quality coaching for competitive and school-level examinations. Join our JEE crash course to learn from the experts. We also provide JEE Main mock test and JEE Main previous year question papers to help students practice for the JEE exam.

Also SEE:

JEE Main 2022 Question Paper Analysis

JEE Repeater Course

Talk to our expert

Resend OTP Timer =
By submitting up, I agree to receive all the Whatsapp communication on my registered number and Aakash terms and conditions and privacy policy