INDIAN ASSOCIATION OF PHYSICS TEACHERS NATIONAL STANDARD EXAMINATION IN JUNIOR SCIENCE (NSEJS)

Instructions to candidates - Read carefully and strictly follow each of them

- 1. Use and carrying calculators of any type is strictly prohibited.
- 2. Use and even carrying smart watches, phones, i-pads or any other communication devices or any other objectionable material in examination centre is strictly prohibited.
- Write the question paper code in your answer sheet in the appropriate space provided, otherwise your answer sheet will not be assessed.
- 4. On the answer sheet, make all the entries correctly, carefully in the space(s) provided, in capital letters as well as by properly darkening the appropriate bubbles using blue or black ball point pen only. Incomplete/ incorrect / carelessly filled information may disqualify your candidature. Please take care while entering.
- Please do not make any mark other than filling the appropriate bubbles properly in the space provided on the answer sheet. Further, do not write on the back side of the answer sheet.
- 6. As answer sheets are evaluated using machine, change of entry is not allowed. Even scratching or overwriting may result in a wrong score.
- 7. Question paper has 80 multiple choice questions. Each question has four alternatives, out of which only one is correct. Choose the correct alternative and fill the appropriate bubble, as shown:

- 8. Correct answer carries 3 marks, wrong answer -1 mark (negative 1), no attempt zero marks.
- 9. Rough work should be done in the space provided in the question paper only.
- 10. Candidates are not permitted to leave the examination hall before the completion of the examination schedule (i.e. before 1200 Hrs).
- 11. Your answer sheet consists of two pages original copy and candidate's copy. Do not detach them till the end of the examination. At the end of examination, submit your answer paper (original copy) to the invigilator and take away the student's copy for your further reference.
- 12. Comments or queries (if any) regarding this question paper, may be sent by email only to iapt.nse@gmail.com till 2359 Hrs. of 23 Nov. 2018. The answers to this question paper will be available at www.iapt.org.in by 02 Dec. 2018 after 1700 Hrs.
- 13. For certificates and awards Please see the website of IAPT: www.iapt.org.in

	2	He	4.00	10	Ne	20.00	18	Ar	20 05	36	Kr	83.80	7	2	131.70	98	Z.	1 20										
	1	-		6	2	19.00	17	0		-	B		+-		126.91	-	-	-					1	-	17497	103	1	
•			-	×0	0	16.00	91	S	32.06	75	Š	-	-	Te		22	-						02	X	_	100	Ž	
SI			-		Z	14.01	15	Д	30.97	33	As	74.92	51	Sb		83	Bi	~					36	T.				1
IEN			4	7		-	7	Si	28.09	32	3	72.59	20	Sn	118.71	82	P						89	H	-	-		_
PERIODIC TABLE OF THE ELEMENTS		. 11	~	. 1	8	10.81		V	26.98	31	Sa	69.72	49	II.	114.82	81	E	204.38					19	Ho		-	Es	-
HEE											Zu	-	48	Z	112.41	8	Hg						99	A			J	
FI										_	3	7	47	Ag		79	Au	196.97	≣ ,	× 8	(222)		65	12	_	16	Bk	
E 0				7				*1.	1	-	_	7	4	모	106.42	28	Z	195.08	2	S	(271)		\$	3	157.25	8	E	
ABI									1	-		4	3	Rh	102.91	=	Ļ	192.2	5. 3	M	(208)		_	E	-	95	Am	-
ICI						-3			36	_	_	35.85	_		<u>=</u>	0	ő	190.2	5	8	(777)			Sm	_	2	Z	The state of
IOD									36		_	7.7	_	_	8	2 1	Re	186.21	40	no.				E	_	_	N.	
PER									24		_	+	_	_	2 5	:	_	108	3	9	(200)	1	8	PN	7	22		
								10	23		-	+-	-		73			180.95	ź	100		2	6.1		_	5	Pa	
			i,						22		_	+		-	77	_	37.	1049	Rf	0,90		05	8 (7	33	-	10.00
		4	Ra	2	=	7	.00	9	21.		_	-	>	~	-	*	130	89	TAC	227.03		-		,			_	-
- H	1.008	-	Li	-	+	-	a Mg	-	20	_	-	38	2	_	+	B	127 23	88	Ra					*Lanthanide Scries			†Actinide Series	
,	_		_	_	6.9	-	Z	22.99	19	×	39.10	37	8	85.47	55	ع	1000	87	F	7	1 .			antha			Actin	

QUESTION PAPER STARTS HERE

Q1. A tiny ball of mass m is initially at rest at height H above a cake of uniform thickness h. At some moment the particle falls freely, touches the cake surface and then penetrates in it at such a constant rate that its speed becomes zero on just reaching the ground (bottom of the cake). Speed of the ball at the instant it touches the cake surface and its retardation inside the cake are respectively

(a)
$$\sqrt{2gh}$$
 and $g\left(\frac{H}{h}-1\right)$
(c) $\sqrt{2gh}$ and $g\left(\frac{h}{H}-1\right)$

(b)
$$\sqrt{2g(H-h)}$$
 and $g(\frac{H}{h}-1)$

(c)
$$\sqrt{2gh}$$
 and $g\left(\frac{h}{H}-1\right)$

(b)
$$\sqrt{2g(H-h)}$$
 and $g\left(\frac{H}{h}-1\right)$
(d) $\sqrt{2g(H-h)}$ and $g\left(\frac{h}{H}-1\right)$

Q 2. Two sound waves in air have wavelengths differing by 2 m at a certain temperature T. Their notes have musical interval 1.4. Period of the lower pitch note is 20 ms. Then, speed

Q3.

Two plane mirrors M_1 & M_2 have their reflecting faces inclined at θ . Mirror M_1 receives a ray AB, reflects it at B and sends it as BC. It is now reflected by mirror M_2 along CD, as shown in the figure. Total angular deviation δ suffered by the incident ray AB is:

- (a) $\delta = 90^{\circ} + 2\theta$
- (b) $\delta = 180^{\circ} + 2\theta$
- (c) $\delta = 270^{\circ} 2\theta$
- (d) $\delta = 360^{\circ} 2\theta$

Q4.

In the adjacent figure, line AB is parallel to screen S. A linear obstacle PQ between the two is also parallel to both. AB, PQ and screen S are coplanar. A point source is carried from A to B, along the line AB. What will happen to the size of the shadow of PQ (cast due to the point source) on the screen S?

- (a) It will first increase and then decrease.
- (b) It will first decrease and then increase.
- (c) It will be of the same size for any position of the point source on the line AB.
- (d) Umbra will increase and penumbra will decrease till central position.

05

Two particles P_1 and P_2 move towards origin O, along X and Y-axes at constant speeds u_1 and u_2 respectively as shown in the figure. At t = 0, the particles P_1 and P_2 are at distances a and b respectively from O. Then the instantaneous distance s between the two particles is given by the relation:

(a)
$$s = [a^2 + b^2 + (u_1^2 + u_2^2)t^2 - 2t(au_1 + bu_2)]^{1/2}$$

(b)
$$s = [a^2 + b^2 + (u_1^2 + u_2^2)t^2 - 2t(bu_1 + au_2)]^{1/2}$$

(c)
$$s = [a^2 + b^2 + (u_1^2 + u_2^2)t^2 + 2t(au_1 + bu_2)]^{1/2}$$

(d)
$$s = [a^2 - b^2 + (u_1^2 + u_2^2)t^2 - 2t(au_1 + bu_2)]^{1/2}$$

Q6. An electric generator consumes some oil fuel and generates output of 25 kW. Calorific value (amount of heat released per unit mass) of the oil fuel is 17200 kcal/kg and efficiency (output to input ratio) of the generator is 0.25. Then, mass of the fuel consumed per hour and electric energy generated per ton of fuel burnt are respectively

- (a) 0.5 kg, 20000 kWh
- (b) 0.5 kg, 5000 kWh
- (c) 5 kg, 5000 kWh
- (d) 5 kg, 20000 kWh

Q 7. Image is obtained on a screen by keeping an object at 25 cm and at 40 cm in front of a concave mirror. Image in the former case is four times bigger than in the latter. Focal length of the mirror must be____.

- (a) 12 cm.
- (b) 20 cm.
- (c) 24 cm.
- (d) 36 cm.

Q 8. A glass cube of refractive index 1.5 and edge 1 cm has a tiny black spot at its center. A circular dark sheet is to be kept symmetrically on the top surface so that the central spot is not visible from the top. Minimum radius of the circular sheet should be (Given: $\frac{1}{\sqrt{2}} = 0.707$, $\frac{1}{\sqrt{3}} = 0.577$, $\frac{1}{\sqrt{5}} = 0.447$)

(a) 0.994 cm
(b) 0.447 cm
(c) 0.553 cm
(d) 0.577 cm

Q9. A metal rod of length L at temperature T, when heated to temperature T', expands to new length L'. These quantities are related as $L' = L(1 + \alpha[T' - T])$ where α is a constant for that material and called as coefficient of linear expansion. Correct SI unit of α is ____.

(a) m-K⁻¹ (b) m-K (c) K⁻¹ (d) α is a pure number

Q 10. A paramedical staff nurse improvises a second's pendulum (time period 2 s) by fixing one end of a string of length L to a ceiling and the other end to a heavy object of negligible size. Within 60 oscillations of this pendulum, she finds that the pulse of a wounded soldier beats 110 times. A symptom of bradycardia is pulse < 60 per minute and that of tachycardia is > 100 per minute. Then the length of the string is nearly _____ and soldier has symptoms of _____

(a) 1 m, bradycardia (c) 1 m, tachycardia

- (b) 4 m, bradycardia
- (d) 4 m, tachycardia

Q11.

Each resistance in the adjacent circuit is $R \Omega$. In order to have an integral value for equivalent resistance between A & B, the minimum value of R must be:

(a) 4Ω (b) 8Ω (c) 16Ω (d) 29Ω

Q 12. A block of wood floats on water with $\left(\frac{3}{8}\right)^{tn}$ of its volume above water. It is now made to float on a salt solution of relative density 1.12. The fraction of its volume that remains above the salt solution now, is nearly

(a) 0.33

(b) 0.44

(c) 0.67

(d) 0.56

Q13. Suppose our scientific community had chosen force, speed and time as the fundamental mechanical quantities instead of length, mass and time respectively and they chose the respective units of magnitudes 10 N, 100 m/s and $\frac{1}{100} \text{ s}$. Then the unit of mass in their system is equivalent to _____ in our system.

(a) 10^3 kg

(b) 10⁻³ kg

(c) 10 kg

(d) 10⁻¹ kg

Q 14.

Two equally charged identical pith balls are suspended by identical massless strings as shown in the adjacent figure. If this set up is on Mercury $(g = 3.7 \text{ m/s}^2)$, Earth $(g = 9.8 \text{ m/s}^2)$ and Jupiter ($g = 24.5 \text{ m/s}^2$), then angle 2θ will

(a) maximum on Mercury (b) maximum on Earth, as it has atmosphere

(c) maximum on Jupiter

(d) the same on any planet as Coulomb force is independent of gravity

Q15. Three objects of the same material coloured white, blue and black can withstand temperatures up to 2000°C. All these are heated to 1500°C and viewed in dark. Which option is correct?

(a) White object will appear brightest

(b) Blue object will appear brightest

(c) Black object will appear brightest

(d) Being at the same temperature, all will look equally bright

Q 16. A car running with a velocity of 30 m/s reaches midway between two vertical parallel walls separated by 360 m, when the driver sounds the horn for a moment. Speed of sound in air is 330 m/s. After blowing horn, the first three echoes will be heard by the driver respectively at

(a) 1.2 s, 2.4 s, 3.0 s

(b) 1.0 s, 2.4 s, 3.0 s

(c) 1.0 s, 2.0 s, 3.0 s

(d) 1.2 s, 2.4 s, 3.6 s

- (I) If two copper spheres of same radii, one hollow and the other solid are charged to the same electrical potential, the solid sphere will have more charge.
- (II) A charged body can attract another uncharged body.
- (III) Electrical lines of force originating from like charges will exert a lateral force on each other, while those originating from opposite charges can intersect each other.

(a) Only (I) is correct.

(b) Only (II) is correct.

(c) Only (I) & (II) are correct.

(d) All (I), (II) & (III) are correct.

Q18.

Refer the adjacent circuit. The voltmeter reads 117 V and ammeter reads 0.13A. If the resistance of voltmeter and ammeter are 9 k Ω and 0.015 Ω , respectively, the value of R is

(a) 500 Ω

(b) $1k\Omega$

(c) $1.5k\Omega$

(d) $2 k\Omega$

Page 5 of 18

Q19. A bar magnet is	allowed to fall freely f	rom the same height tow	ards a current carrying
loop along its axis,	as shown in the four	situations I to IV. Arro	ws snow direction of
coil interaction is ma	ximum:	in which the potential	chergy or the magnet
	N II S	III N IV S	
(a) I, III	(b) I, IV	(c) II, IV	(d) II, III
Select correct opt	rflow if the beaker is overflow if the beaker is ion regarding (I) and (at 4°C. Consider the for cooled for some time. ν heated for some time. ν II).	entralis (a)
(c) Both (I)	and (II) are correct	(d) Neither (I) nor	(II) is correct
Q21. P3- has a larger radi	us than atom of P beca	ause no le	innay a sele
 (a) There is greater could (b) The core electrons in (c) The nuclear charge is (d) The electrons in P³- ha Q22. A substance is disso	P ³⁻ exert a weaker shi weaker in P ³⁻ than it i ave a greater coulomb	elding force than those s in P. ic repulsion than those	of a neutral atom.
contains 240g of the subst	ance, what is the mole	ecular mass of the subs	tance?
(a) 60g/mole	(b) 120g/mole	(c) 240g/mole	(d) 480g/mole
Q23. A car battery was keep battery acid (H ₂ SO ₄) was macid was 4.2 M then mass p	easured and found to	be 1.28 g cm ⁻³ . If Initial	rged density of the molarity of battery
(a) 28%	(b) 30%	(c) 32%	(d) 34%
Q24. Element "X" with atom of atomic mass 20 to form a that it contains 60% of X and will be	compound. When the	his compound was ana	lysed it was found
(a) X ₃ Y	(b) X ₂ Y ₃ '	(c) Y ₃ X	(d) X ₆ Y ₄
	Page 6 o	f 18	

	of moles of nitrogen gas		s cynnicer or cap	acity two
(a) 14.7	(b) 6.8	(c) 3.4	(d) 2.9	
	ce tension experiment w iment is carried out in sp			rises up to
	height of 0.1m height of 0.98m		neight of 0.2m its full length	
oxide gas, and we containing the gas we methane at the sam was found to be W	eighed it at temperature was found to be W ₁ . She temperature and press ₂ . She repeated the proceed be W ₃ . The ratio of the	e T and pressure P. then flushed the flash sure. The weight of these with oxygen under	The weight of k, cleaned and file ne flask containing er the same cond	the flask lled it with ng oxygen
(a) 2:1:	4 (b) 4:2:1	(c) 4:1:	2 (d) 1	:2:4
four students P, Q,	SO ₂ filled with sulphur diox R, S. The following obsenter the gas jar and su	ervations and inferer	ice were reporte	of water by
Q: Water rushed R: Water did not S: A small amou soluble in wat	into the gas jar and sul enter in the gas jar and nt of water entered the er.	phur dioxide is solub I sulphur dioxide is in gas jar slowly and so	ole in water. Insoluble in wate Insoluble in wate Insoluble in water in wat	
Then the	correct set of observat	ions and inference is	reported by,	
(a) P	(b) Q	(c) R (d) S		
	ure aluminium sulphate m hydroxide solution.			
(a) 0.5g	(b) 2.7g	(c) 1.7 g	(d)	0.54g
in a garden. The daff soil has a pH 4.5, to phosphate, Sandy ad	e square meter area wa fodil plants grow best i o grow daffodils, Suh ded aluminium sulpha as successful in growin	n the soil having a pa as added common s te and Kimi added a	H range of 6.0 to salt, Bobby add	o 6.5. If the led sodium
(a) Suhas	(b) Bobby	(c) Sandy	(d) K	imi
	107,330	- Amerikan (f. 77. j.) Ludo		

the following statement is correct?	Y, W and Z are 2, 6, 4 and	d 1 respectively. Which of
 (a) melting point of compound fo (b) compound formed by X and Y (c) melting point of compound fo (d) Incomplete information so info 	is more volatile than that	
The March of the State of the San to		
Q32. W g of pure coal was combusted in was absorbed in 0.1M KOH solution. 0.1M KOH. The amount of coal combustions are combusted in the coal combustions.	in pure dry oxygen. The ca The complete absorption asted is	of CO ₂ required 5cm ³ of
(a) 3mg (b) 6mg	(c) 11mg	(d) 12mg
Q33. Sulphur di-oxide gas and ammoni of gases containing same number of mo	a gas were mixed in differ plecules at NTP is	rent proportions. The pair
(a) $1120 \text{ cm}^3\text{ of SO}_2 + 0.85 \text{ g of ammon}$ (c) $1680 \text{ cm}^3 \text{ of SO}_2 + 1.7 \text{ g of ammon}$	nia (b) 0.25g mole of So	O_2 + 2240 cm ³ of ammonia O_2 + 0.85 g of ammonia
Q34. A strip of iron with mass 15.5 g sulphate. After some time the reaction st	is placed in a solution c	ontaining 21.0 g copper
sulphate. After some time the reaction somass of copper formed was found to be a this reaction.	8.60g. Find the mass of fe	to have mass 8.5 g. The frous sulphate formed in
mass of copper formed was found to be station. (a) 19.40 g (b) 18.40 g (c) 18.40 g (d) 18.40 g (e) 18	8.60g. Find the mass of fe	to have mass 8.5 g. The trous sulphate formed in (d) 16.40 g
mass of copper formed was found to be 8 this reaction. (a) 19.40 g (b) 18.40 Q35. Sonu has N/2 HCl solution and M	8.60g. Find the mass of fe	to have mass 8.5 g. The frous sulphate formed in (d) 16.40 g
mass of copper formed was found to be 8 this reaction. (a) 19.40 g (b) 18.40 Q35. Sonu has N/2 HCl solution and M prepare 2 litres of N/5 HCl solution. What	8.60g. Find the mass of fe	to have mass 8.5 g. The frous sulphate formed in (d) 16.40 g tion. They are asked to as be mixed?
mass of copper formed was found to be 8 this reaction. (a) 19.40 g (b) 18. Q35. Sonu has N/2 HCl solution and M prepare 2 litres of N/5 HCl solution. What (a) (0.5 +1.5) litre (b) (1.0 +1.0) Q36. A solution (P) was prepared by dissection of this solution was taken and was a solution.	8.60g. Find the mass of fee 40 g (c) 17.40 g (d) Ionu has N/10 HCl solution of two solutions of two solutions of the column of two solutions	to have mass 8.5 g. The frous sulphate formed in (d) 16.40 g tion. They are asked to as be mixed? itre (d) (0.2 +1.8) litre eid in 100 ml water.
mass of copper formed was found to be 8 this reaction. (a) 19.40 g (b) 18. Q35. Sonu has N/2 HCl solution and M prepare 2 litres of N/5 HCl solution. What (a) (0.5 +1.5) litre (b) (1.0 +1.0) Q36. A solution (P) was prepared by dissection of this solution was taken and was a solution.	8.60g. Find the mass of fee 40 g (c) 17.40 g (d) Ionu has N/10 HCl solution of two solutions of two solutions of the column of two solutions	to have mass 8.5 g. The frous sulphate formed in (d) 16.40 g tion. They are asked to see be mixed? itre (d) (0.2 +1.8) litre eid in 100 ml water.
mass of copper formed was found to be 8 this reaction. (a) 19.40 g (b) 18.4 Q35. Sonu has N/2 HCl solution and M prepare 2 litres of N/5 HCl solution. What (a) (0.5 +1.5) litre (b) (1.0 +1.0) Q36. A solution (P) was prepared by diss 25 ml of this solution was taken and was 3 What weight of NaOH in ppm will be request. (a) 10 ppm (b) 20 ppm	8.60g. Find the mass of fee 40 g (c) 17.40 g (d) 40 g	to have mass 8.5 g. The frous sulphate formed in (d) 16.40 g tion. They are asked to as be mixed? itre (d) (0.2 +1.8) litre (d) in 100 ml water. to prepare solution (Q). of solution (Q)?
mass of copper formed was found to be a this reaction. (a) 19.40 g (b) 18.4 Q35. Sonu has N/2 HCl solution and M prepare 2 litres of N/5 HCl solution. What (a) (0.5 +1.5) litre (b) (1.0 +1.0) Q36. A solution (P) was prepared by diss 25 ml of this solution was taken and was 3 What weight of NaOH in ppm will be required.	8.60g. Find the mass of fee 40 g (c) 17.40 g (d) 40 g	to have mass 8.5 g. The frous sulphate formed in (d) 16.40 g tion. They are asked to as be mixed? itre (d) (0.2 +1.8) litre (d) in 100 ml water. to prepare solution (Q). of solution (Q)?

From above reaction weight of KBrO ₃)	n the equivalent we	+ 6H ₂ O + 2K ⁺ eight of KBrO ₃ can l	pe calculated as (M	I is molecular
(a) M/5	(b) M/10	(c) M/12) M/2
Q39. Shaila took aboutube. To this solution turned:	out 10 cm ³ of a dilu she added few dro	ted Potaggium hydr	(CO_3) ogen carbonate solvator. The colour of	ution in a test of the solution
(a) orange	(b)	green (c) blu	le .	(d) yellow
Q40. Which of the fol	llowing is incorrec	t?		
(a) Chalcocite		/agnetite - Iron		
Q41. Let AB be a diam and C ₃ of radii 15 cm a C ₄ touches C ₁ , C ₂ and	and 10 cm touch C	internally at A and	B respectively. A	Wo circles C ₂ A fourth circle
(a) 12 cm	(b) 15 cm	(c) 20 d	em (d) 30 cm
Q42. A 5 x 5 x 5 cube in at least one unit cube)	is built using unit can be formed using	cubes. How many on the same number	different cuboids r of unit cubes?	(that differ in
(a) 1000	(b) 1728	(c) 273	0 (d) 3375
Q43. What is the la $n^2(n^2-1) (n^2-n^2)$			ger k such tha	nt k divides
(a) 6	(b) 12	(c) 24	(d) 48	
Q44. A person kept rollin time on the top. This hap was 46. Which number a	opened in 12th thr	ow and the sum o	of the numbers a f all the numbers	ppeared third in 12 throws
(a) 6.	(b) 4	(c) 2	(d) 1	
Q45. In a square ABCD triangle. The segment AP is	, a point P is ins cuts the diagona	ide the square su I BD in E. Suppos	ch that ABP is a se AE = 2. The a	an equilateral rea of ABCD
(a) $4+2\sqrt{3}$	(b) 5+2√3	(c) 4+4	$\sqrt{3}$ (d) 5+	4√3
Q46. Let <i>n</i> be a positive in number of positive divisor		le by 6. Suppose	n has 6 positive	divisors. The
(a) 54	(b) 36	(c) 18	(d) 1	2

 $2KBrO_3 + 12H^+ + 10e^- \rightarrow Br_2 + 6H_2O + 2K^+$

Q38.

(d) 0

total number of sides the	red red C	d green, in the oth	aken. In one of them, its sides her, sides are coloured green ines and 80 green lines. The
(a) 23	(b) 28	(c) 33	(d) 38
Q49. A box contains so seventh of the remaining remaining balls would be sum of the digits of n is	ome red and some balls would be red; e red. If n denotes	yellow balls. If o if one yellow ball the total number	one red ball is removed, one is removed, one-sixth of the of balls in the box, then the
(a) 6	(b) 7	(c) 8	(d) 9
that AX:XB = 1:2 = CY: AY in L. If m/n denotes t	ctangle. Let X and YD. Join AY and Che ratio of the area	Y be points respe X; let BY interse of XKYL to that o	ctively on AB and CD such ct CX in K; let DX intersect of ABCD, then $m + n$ equals
(a) 9	(b) 11	(c)13	(d) 15
그 맛있는 것 같아 그는 그를 깨었다.	ilateral triangle. The $3 + DC = 4$. The dia	e bisector of ∠ F	BAC meets the circumcircle uncircle of ABC is
(a) 4	(b) 3√3	(c) 2√3	(d) 2
Q52. Let T_k denote the k -integers $m \neq n$ such that T_k	th term of an arithm $n = 1/n$ and $T_n = 1/n$	netic progression. n . Then T_{mn} equal	Suppose there are positive
	$(b)\frac{1}{m}+\frac{1}{n}$	(c) 1	(d) 0
Q53. In a triangle ABC, le	et AD be the media	n from A; let E	be a point on AD such that
AE : ED = 1 : 2; and let BE	extended meets A	C in F. The ratio	of AF/FC is
AE : ED = 1 : 2; and let BE (a) 1/6	(b) 1/5	C in F. The ratio	of AF/FC is (d) 1/3
(a) 1/6	(b) 1/5	(c) 1/4	of AF/FC is (d) 1/3
(a) 1/6 Q54. If $\sin \theta$ and $\cos \theta$ are r (a) $p^2 - q^2 + 2p$ (c) $p^2 + q^2 - 2p$	(b) $1/5$ roots of the equation $r = 0$ (b) $r = 0$ (d)	(c) $1/4$ $(x) = \frac{1}{4}$ $(x) = \frac{1}{4}$ $($	of AF/FC is (d) 1/3 O, then:
(a) $1/6$ Q54. If $\sin \theta$ and $\cos \theta$ are r (a) $p^2 - q^2 + 2p$ (c) $p^2 + q^2 - 2p$ Q55. For a regular k sided.	(b) $1/5$ roots of the equation $r = 0$ (b) $r = 0$ (d)	(c) $1/4$ $(x) \frac{1}{4}$ $\ln px^2 + qx + r = 0$ $(p+r)^2 = q^2 - r^2$ $(p-r)^2 = q^2 + r^2$	of AF/FC is (d) 1/3 O, then:
(a) $1/6$ Q54. If $\sin \theta$ and $\cos \theta$ are regions of a and a are regions of a are regions of a are gular a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a and a are regions of a are regions of a and a are regions of a and a are regions of a are regions of a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a and a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a are regions of a and a are regions of a and a are regions of a and a are regi	(b) $1/5$ roots of the equation $r = 0$ (b) $r = 0$ (d)	(c) $1/4$ $(x) \frac{1}{4}$ $\ln px^2 + qx + r = 0$ $(p+r)^2 = q^2 - r^2$ $(p-r)^2 = q^2 + r^2$	of AF/FC is (d) 1/3 O, then:

Q47. The value of

(a) a

(b) b

(c) x

Q48. Two regular polygons of different number of sides are taken. In one of them, its sides

The	sum of their recip	rocals is 6. The p	roduct of the	terms of the ge	ometric progression	ı is
	(a) 36	(b) 32) 24	(d) 18	
Q57. num	. Digits <i>a</i> and <i>b</i> are ber of ordered pai	e such that the proof (a, b) is	duct $\overline{4a1} \times \overline{2}$	$\overline{5b}$ is divisible	by 36 (in base 10).	Γhe
	(a) 15	(b) 8	(c) 6	(d) 4	
Q58. twos		esest to $\sqrt{1111}$	<u>- 222 2</u> ,	where there as	re 2018 ones and 1	009
4	(a) $\frac{10^{1009}-1}{3}$	(b) $\frac{10^{1009}-1}{9}$	(c) 10 ²	3 3	(d) $\frac{10^{2018}-1}{9}$	
to BO	In a triangle ABC with E on AC. atio of the area of	Let M and N be t	the mid point	ts of DE and B	1:4 and DE is pa C respectively. WABC?	rallel hat is
	(a) 1/4	(b) 9/32	(c)	7/32	(d) 15/32	
Q60.	The number of c	listinct integers in	n the collecti	on $\left[\frac{10^2}{1}\right]$, $\left[\frac{10^2}{2}\right]$,	$\left[\frac{10^2}{3}\right], \dots, \left[\frac{10^2}{20}\right],$	
19	where [x] deno	tes the largest int	eger not exc	eeding x, is		
	(a) 20	(b) 18		(c) 17	(d) 15	
Q61.	True coelom is n	ot present in anii	nals of:			
L	a) Platyhelminthe	es (b) Anneli	ida (c) Echinoderma	ata (d) Arthropo	da
O62.	The intracellular	organelle that is	responsible	for formation	of acrosomal vesi	cle is:
	(a) endoplasmic (c) mitochondri	reticulum	(b) Golg	gi apparatus e of the above		
Q63.	The genetically i	nodified (GM) t	orinjal in Ind	ia has been de	veloped for:	
-	(a) enhancing s	helf life		(b) insect-re	sistance	
	(c) drought-res	istance		(d) enhancin	ng mineral content	
	Cells divided by Cells moved we Ether lipids we		or fragment agella ell membrar	ation, or budd	lowing characters ing	
	Which of the fo	ollowing categor	y do the cell	s belong to?		
V	(a) Archaea (b) Plant cells (c) Unicellul	ar eukaryotes	(d) Cyanobac	teria

Q65. Character(s) of acquired immunity is (are):

- (a) differentiation between self and non-self
- (b) specificity of antigen

(c) retains memory

(d) all the above

Q66. Instead of using chemical fertilizers in a paddy field, a farmer thought of employing nitrogen fixation technique. Amongst the following which would be beneficial for his

- (e) Glycine max Rhizobium
- (b) Cycas Nostoc
- (c) Casuarina Frankia
- (d) Azolla-Anabaena

Q67. An action potential in the nerve fibre is produced when positive and negative charges on outside and inside of the axon membrane are reversed because:

- (a) all potassium ions leave the axon
- (b) more potassium ions enter the axon as compared to sodium ions leaving it
- (c) more sodium ions enter the axon as compared to potassium ions leaving it
- (d) all sodium ions enter the axon

Q68. A geneticist was studying the pathway of synthesis of an amino acid 'X' in an organism. The presence (either synthesized de novo or externally added) of 'X' is a must for the survival of that organism. She isolated several mutants that require "X" to grow. She tested whether each mutant would grow when different additives, P, Q, R, S and T were used. '+' indicates growth and '-' indicates the inability to grow in the mutants tested. Find out the correct sequence of additives in the biosynthetic pathway of 'X'

Organisms		Marin M	Additives		1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Also we for	: P	Q	R	2	70
Wild-type	+	+		. 5	1 1 71 1 14 7
Mutant 1	_		- T	+	+ **
Mutant 2		+		- 1, .	+.
Mutant 3	_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Section 1	3 - 1 +)	No. + 19
Mutant 4		4	T	V V	+ .
araumit 4		+	+		+

(a)
$$P \rightarrow Q \rightarrow R \rightarrow S \rightarrow T$$

(b)
$$P \rightarrow R \rightarrow S \rightarrow O \rightarrow T$$

(a)
$$P \rightarrow Q \rightarrow R \rightarrow S \rightarrow T$$

(b) $P \rightarrow R \rightarrow S \rightarrow Q \rightarrow T$
(c) $T \rightarrow P \rightarrow Q \rightarrow S \rightarrow R$
(d) $P \rightarrow S \rightarrow Q \rightarrow R \rightarrow T$

(d)
$$P \rightarrow S \rightarrow Q \rightarrow R \rightarrow T$$

Q69. In a case of mammalian coat color, the principal gene identified is 'C' which codes for a tyrosinase enzyme. In case of rabbits four different phenotypes are observed Full Color>Chinchilla>Himalayan>Albino (in order of the expression of gene 'C' and its alleles). In a progeny obtained after crossing two rabbits, the percentages of Chinchilla, Himalayan and Albino rabbits were 50, 25 and 25 respectively. What must have been the genotypes of the parent rabbits?

(a) CchCch X Cchc

Q70. It was observed in a group of tadpoles of a mutant frog reared in a laboratory that their development was arrested at a particular stage. The exact tissue that was affected by the mutation is unknown. The development was then resumed and accelerated by injecting the tadpoles with the extracts prepared from various tissues of the wild type frogs. The observations of the experiment are given below.

Experiment No.	Tissue Extract	Observations
1	Anterior lobe of pituitary	Development resumed
2	Posterior lobe of pituitary	Development did not resume
3	Thyroid gland	Development resumed
4	Anterior lobe of pituitary + Thyroid gland	Development resumed
5	Anterior + posterior lobe of pituitary	Development resumed
6	Posterior lobe of pituitary + Thyroid gland	Development did not resume

From the above observations, find out the tissue that is affected by the mutation.

(a) Anterior lobe of pituitary

(b) Posterior lobe of pituitary

(c) Thyroid gland

(d) Both pituitary and thyroid gland

Q71.

Group A	Group B
Salmon	Alpine salamander
Bullfrog	Spiny anteater
Platypus	Common toad
Bull shark	Crocodile

Identify the odd ones from each group (A and B) based on same criterion.

(a) Platypus, Alpine Salamander

(b) Bull shark, Alpine salamander

(c) Bullfrog, Crocodile

(d) Platypus, Common toad

Q72. A patient was administered a chemical agent called Guanfacine hydrochloride after the patient showed the symptoms like shortness of breath and headache. Guanfacine hydrochloride is a known stimulant of central a2-adrenergic receptors of the medulla regulating the sympathetic nervous system. The patient in this case must be suffering from ..

(a) Hypertension

(b) Hyperstimulation

(c) Hyperpolarization

(d) None of the above

Q73. A bacterial dsDNA molecule, 2988 bp in length, was found to have the following composition:

	T	C	A	G
Strand I	348	X	111 67	1400
Strand II	650		- 1	Y

2988

The respective values of X and Y are:

(a) 1400 and 590

(b) 590 and 1400 (c) 590 and 590 (d) None of the above

Q74. What would be the length of a polypeptide translated from mRNA which is encoded by 2988 bp of a bacterial gene?

(a) 989

(b) 992

(c) 995

(d) 998

Q75. A student recorded the data for five types of cells as given below:

Character	P	0	D	S	T
Cell wall	+				+ .
Centrioles	<u> </u>	T			-
Chloroplast		-		T. 1	
Mitochondrion		+ +		<i>1</i> .	+
Nucleus		+		T .	+
Plasma membrane	+	T .	- 10-200	т.	+
RNA / DNA	+	+	7	т.	1 + 35 .
Vacuoles	+	+	. +	* * * * * * * * * * * * * * * * * * *	- 1

The five cell types P, Q, R, S and T are:

(a) P- Bacterium, Q- Plant, R- Virus, S- Animal, T- Fungus

(b) P- Bacterium, Q- Plant, R- Virus, S- Fungus, T- Animal

(c) P- Fungus, Q- Plant, R- Bacterium, S- Animal, T- Virus

(d) P- Plant, Q- Bacterium, R- Virus, S- Animal, T- Fungus

Q76. An environment conservation group performed a survey of some diverse locations in the country and represented it as under:

Which amongst these sites should be included as a biodiversity hotspot?

(a) Site A

(b) Site B

(c) Site C

(d) Site D

Q77. A bacterium has a generation time of 50 minutes. A culture containing 108 cells per mL is incubated for 300 minutes. What will be the number of cells after 300 minutes?

(a) 64×10^3 cells

(6) 6.4 x 10^8 cells (c) 64 x 10^9 cells

(d) 6.4 x 109 cells

Q78. The blood grouping system is an example of 'multiple allelism'. In order to find out the gene products of various gene variants, different enzymes (codes used for the purpose of experimentation are X and Y) from four blood samples were assayed. The enzymes were quantified and the information obtained from these experiments is given in percentages in the following table. '+' indicates presence of an enzyme and '-' indicates the absence of that enzyme from the blood sample. The standard codes for dominant and recessive alleles are considered. Identify the blood groups of subjects and choose the correct option of their genotypes from given options. (In table: P means present, A means absent)

Subjects →	Ramesh		Ali		Sophia		Balwinder	
Enzymes \	P/A	. %	P / A	.%	P / A	%	P / A	%
X	+	50	+	50	+	100		
Y	1	-	+	50	- ·	<u>-</u> , 1	+	100

(a) IAi, ii, IBi, IAIB

(b) IAi, IAIB, IAIA, IBIB

(c) IBi, IAIB, ii, IBi

(d) IBi, ii, IAIB, IAi

Q79. In an experiment, a scientist discovered a darkly stained chromatin body on the periphery of nucleus of epithelial cells obtained from an eight year old boy. This is indicative of a particular syndrome. Find out the best possible chromosome combination of their parents from the options given below; which have the highest probability of producing the child under investigation. 'A' indicates autosome. 'X' and 'Y' represent the sex chromosomes.

- (a) 22AA+XY, 22AA+XXX
- (b) 22AA+XXY, 22AA+XXX
- (c) 22AA+XY, 22AA+XX
- (d) 22AA+XXY, 22AA+XX

Q80.

A millionaire Mr. Jim, died recently. Two women, Mary and Lou, claiming to have a child by Jim approached the police demanding a share in his wealth. Fortunately Jim's semen sample was cryopreserved. The scientists used DNA fingerprinting technique to study the three highly variable chromosome regions. The results obtained are shown in the adjoining figure:

After studying the DNA profile, which of the alleged heirs are children of Jim?

- (a) Mary's child
- (b) both are children of Jim
- (c) Lou's child
- (d) none are children of Jim