60°

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

A force F = -40x acts on a mass of 1 kg. x is the 1. position of the mass. If maximum speed of the mass is 4 m/s, find the amplitude. All parameters are in SI units.

(1)
$$\frac{1}{\sqrt{10}}$$
 m (2) $\frac{2}{\sqrt{10}}$ m
(3) $\frac{3}{\sqrt{10}}$ m (4) $\frac{4}{\sqrt{10}}$ m

Answer (2)

- **Sol.** $V_{\text{max}} = A\omega = A\sqrt{\frac{k}{m}}$ $\Rightarrow 4 = A \sqrt{\frac{40}{1}}$ $\Rightarrow A = \frac{2}{\sqrt{10}} m$
- 2. Consider 2 inclined plane of same height. 1st has a smooth surface and angle of inclination is 45°, other has a rough surface and angle of inclination is 60°. If ratio of time taken to slide on then its 'n'. Find coefficient of friction of rough inclined plane.

A particle undergoing uniform circular motion about 3. origin. At certain instant x = 2 m and $v = -4\hat{j}$ m/s, find velocity and acceleration of particle when at x = -2 m.

(1)
$$\vec{v} = -4\hat{j}$$
 m/s
 $\vec{a} = 8\hat{i}$ m/s²
(2) $\vec{v} = 4\hat{j}$ m/s
 $\vec{a} = 8\hat{i}$ m/s²
 $\vec{v} = -4\hat{i}$ m/s

(3)
$$\vec{a} = -8\hat{i} \text{ m/s}^2$$

(4)
$$\vec{v} = 4j \text{ m/s}$$

 $\vec{a} = -8\hat{i} \text{ m/s}^2$

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

 $\vec{a} = 8 \text{ m/s}^2(\hat{i})$

4. A man pulls a block as shown:

Consider the following statements:

- (a) Work done by gravity on block is +ve
- (b) Work done by gravity on block is -ve
- (c) If man pulls block with constant speed, then tension in string equals weight of block.

m

(d) None of the above

Which of the statement(s) is/are correct?

- (1) (b) & (c) only (2) (d) only
- (3) (a) & (c) only (4) (a) only

Answer (1)

Sol. Weight acts down and displacement is $up \Rightarrow$ statement (b) is correct.

T - mg = ma

$$\Rightarrow$$
 If $a = 0, T = mg$

 $X_1 = \overline{A}$

 $X_3 = B \cdot \overline{A}$

 $X_{A} = (A\overline{B})$

 $X_2 = \overline{B}$

$$Y = X_3 + X_4$$

$$= A\overline{B} + B\overline{A}$$

 In a communication system, maximum voltage is 14 mV and minimum voltage is 6 mV. Find out the modulation index.

(1) 0.2	(2) 0.6
(3) 0.4	(4) 0.3

Answer (3)

Sol. Index =
$$\frac{V_{\text{max}} - V_{\text{min}}}{V_{\text{max}} + V_{\text{min}}} = \frac{14 - 6}{14 + 6} = 0.4$$

8. The gravitational potential due to a solid uniform sphere of mass *M* and radius *R* at a point at radial distance r (r > R) from its centre is equal to

(1)
$$-\frac{GM}{r}$$
 (2) $-\frac{GM}{2r}$
(3) $-\frac{GMR}{r^2}$ (4) $-\frac{GM(R+r)}{r^2}$

Answer (1)

Sol.
$$E_{(r)} = \frac{GM}{r^2}$$
 $(r > R)$
 $dV = -\vec{E} \cdot d\vec{r}$
 $\int_{V}^{0} dV = -\int_{r}^{\infty} \frac{GM}{r^2} dr$
 $V = -\frac{GM}{r}$

- 9. Resolving power of compound microscope will increase with
 - (1) Decrease in wavelength of light and increase in numerical aperture
 - (2) Increase in wavelength of light and decrease in numerical aperture
 - (3) Increase in both wavelength and numerical aperture
 - (4) Decrease in both wavelength and numerical aperture

Answer (1)

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

Sol. Resolving power of microscope
$$\infty \left(\frac{2n \sin 2}{2}\right)$$

n = Refractive index of the medium separating object and aperture.

 $n\sin\theta$ = Numerical aperture

 λ = wavelength of light used.

10. It is given that $x^2 + y^2 = a^2$, where *a* : radius. Also,

it is given that $(x - \alpha t)^2 + \left(y - \frac{t}{\beta}\right)^2 = a^2$, where t =

time. Then dimensions of α and β are

- (1) [M⁰LT⁻¹] and [M⁰L⁻¹T]
- (2) [M⁰LT] and [M⁰L⁻¹T⁻¹]
- (3) [M⁰LT] and [M⁰LT⁻¹]
- (4) [M⁰L⁻¹T] and [M⁰LT]

Answer (1)

Sol.
$$x \equiv \alpha t = \frac{t}{\beta}$$

 $\Rightarrow L' \equiv \alpha T' \equiv \frac{T'}{\beta}$
 $\Rightarrow \alpha \equiv LT^{-1} \text{ and } \beta = L^{-1}T$

11. **Assertion (A):** EM waves are not deflected by electric field and magnetic field.

Reason (R): EM waves don't carry any charge so they are not deflected by electric field and magnetic field.

- (1) Both (A) and (R) are true and (R) is correct explanation of (A)
- (2) Both (A) and (R) are true, but (R) is not correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) (A) is false but (R) is true

Answer (1)

- **Sol.** EM wave does not have charge therefore they are not deflected by electric or magnetic field.
- 12. de-Broglie wavelength of a body of mass *m* and kinetic energy *E* is given by

(1)
$$\lambda = \frac{h}{mE}$$
 (2) $\lambda = \frac{\sqrt{2mE}}{h}$
(3) $\lambda = \frac{h}{\sqrt{2Em}}$ (4) $\lambda = \sqrt{\frac{h}{2mE}}$

Answer (3)

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

Sol.
$$E = \left(\frac{P^2}{2m}\right)$$

where P is linear momentum, E = kinetic energy, m = mass of particle.

$$P = \sqrt{2Em}$$

$$\lambda = \frac{h}{P} = \frac{h}{\sqrt{2Em}}$$

13. In a region with electric field $30\hat{i}$ V/m a charge particle of charge $q = 2 \times 10^{-4}$ C is displaced slowly from (1, 2) to origin. The work done by the external agent is equal to

(1) 1 mJ	(2) 6 mJ
(3) 2 mJ	(4) 3 mJ

Answer (2)

Sol. $F = qE = 2 \times 10^{-4} \times 30$ N

Work done = $6 \times 10^{-3} \times (1) \text{ J} = 6 \text{ mJ}$

 Consider the following potentiometer circuit : When switch *S* is open, length *AJ* is 300 cm. When switch *S* is closed, length *AJ* is 200 cm. If *R* 5 Ω, find internal resistance *r* of the cell.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. At 300 K, RMS speed of an ideal gas molecules is $\sqrt{\frac{\alpha+5}{\alpha}}$ times the average speed of gas molecules,

then value of
$$\alpha$$
 is equal to $\left(\text{take } \pi = \frac{22}{7} \right)$

Answer (28.00)

Sol

1.
$$v_{\rm rms} = \sqrt{\frac{3RT}{M_0}}$$

 $v_{\rm av} = \sqrt{\frac{8RT}{\pi M_0}}$
 $\frac{v_{\rm rms}}{v_{\rm av}} = \sqrt{\frac{3\pi}{8}}$
 $= \sqrt{\frac{3 \times 22}{8 \times 7}}$
 $= \sqrt{\frac{33}{28}} = \sqrt{\frac{28 + 5}{28}}$
 $\Rightarrow \alpha = 28$

22. An α-particle and a proton are accelerated through same potential difference. The ratio of de-Broglie wavelength of alpha particle to proton is equal to

$$\frac{1}{\sqrt{x}}$$
. Value of x is (take $m_{\alpha} = 4m_{\text{proton}}$)

Answer (08.00)

Sol.
$$\lambda = \frac{h}{p}$$

 $\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mqV}}$
 $\frac{\lambda_{\alpha}}{\lambda_{p}} = \sqrt{\frac{m_{p}q_{p}}{m_{\alpha}q_{\alpha}}} = \sqrt{\frac{1}{4} \times \frac{1}{2}} = \frac{1}{\sqrt{8}}$
 $\Rightarrow x = 8$

23. Time period of rotation of a planet is 24 hours. If the radius decreases to $\frac{1}{4}$ th of original value, then the new time period is x hours. Find 2x.

Answer (03.00)

- **Sol.** I_{ω} = constant
 - $\Rightarrow I_1 \omega_1 = \frac{I_1}{16} \omega_2$ $\Rightarrow \omega_2 = 16\omega_1$
 - \Rightarrow $T_2 = \frac{T_1}{16} = 1.5$ hours
- 24. A projectile is fire with velocity 54 km/hr making angle 45° with horizontal. Angular momentum of this particle of mass 1 kg about the point of projection one second into the motion will be 5N in SI unit ($g = 10 \text{ m/s}^2$). Find the value of N.

Answer (15.00)

Sol. *u* = 54 km/hr = 15 m/sec.

torque at time *t* is $\tau = mgu\cos\theta t$

$$\frac{dl}{dt} = \tau$$

$$\int_{1}^{L} dL = \int_{0}^{1} mgu \cos\theta t dt$$

$$L = \frac{mgu \cos\theta}{2} = \frac{10 \times 15}{2\sqrt{2}} = \frac{75}{2} \text{ kg m}^{2}/\text{sec}$$
So $N = 15$

JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

25. A block of mass 20 kg is moved with a constant force 'F' for 20 seconds starting from rest and then F is removed. It is then observed that block moves 50 m in next 10 seconds. Find F (in N).

Answer (05.00)

Sol. Impulse, Ft = mv

$$\Rightarrow v = \frac{50}{10} = 5 \text{ m/s}$$

$$F \times 20 = 20 \times 5 \Rightarrow F = 5 \text{ N}$$

26. Atomic mass number of a nuclei A is 16 and half life is 1 day. The values for a nuclei B are 32 and $\frac{1}{2}$ days. 320 grams each of A and B are taken initially. Find the ratio of their number of atoms after 2 days.

Answer (08.00)

Sol.
$$N_A = N_{0A}e^{-\lambda_A t}$$

 $N_B = N_{0B}e^{-\lambda_B t}$
 $\Rightarrow \frac{N_A}{N_B} = \frac{N_{0A}}{N_{0B}}\frac{e^{-\lambda_A t}}{e^{-\lambda_B t}}$
 $= \frac{\frac{320}{16}}{\frac{320}{32}} \times \frac{1}{\frac{4}{16}}$
 $= 8$
27.
28.
29.
30.

2