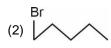
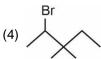
CHEMISTRY


SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.


Choose the correct answer:

1. In which molecule, dehydrohalogenation forms number maximum of isomers (excluding rearrangement)

Answer (1)

Total 3 isomers are possible

- $(2) \rightarrow Only 1 product$
- $(3) \rightarrow 2$ products
- $(4) \rightarrow Only 1 product$
- Which of the following complex has zero spin only magnetic moment?
 - (1) $\left[\text{Fe}(\mathsf{F})_{\varepsilon} \right]^{3-}$
 - (2) $[CoF_6]^{3-}$
 - (3) $\left[\text{Co} \left(\text{C}_2 \text{O}_4 \right)_3 \right]^{3-}$
 - (4) $\left[\text{Fe}(H_2O)_{\epsilon} \right]^{3+}$

Answer (3)

- **Sol.** $\left[\text{Co}(\text{C}_2\text{O}_4)_3 \right]^{3-}$ has $\sigma^2 sp^3$ hybridisation and $3\sigma^6$ electronic configuration and it has zero unpaired electrons.
- Which of the following diseases can be cured by 3. equanil drug?
 - (1) Pain
- (2) Stomach ulcer
- (3) Depression
- (4) Hyperacidity

Answer (3)

Sol. Based on fact

- If Bohr's Radius of H-atom in Ground state is 0.6 A°. Find out Bohr's Radius of 3rd orbit of He+ Ion.
 - (1) $2.7 A^{\circ}$
- (2) 0.9 A°
- (3) $5.4 A^{\circ}$
- (4) 1.8 A°

Answer (1)

Sol.
$$r \propto \frac{n^2}{z}$$

$$r = \frac{.6 \times n^2}{z}$$

$$r = \frac{.6 \times (3)^2}{(2)}$$

$$= .3 \times 9$$

= 2.7 A°

5. Compare the bond order of the following molecules

$$O_2^{-2}$$
, NO, CO

(1)
$$O_2^{-2} > NO > CO$$
 (2) $O_2^{-2} > CO > NO$

(2)
$$O_2^{-2} > CO > NC$$

(3)
$$CO > NO > O_2^{-2}$$
 (4) $NO > CO > O_2^{-2}$

(4) NO > CO >
$$O_2^{-2}$$

Answer (3)

Sol. The correct bond order:

$$O_2^{-2} \rightarrow 1$$

$$CO \rightarrow 3$$

$$NO \rightarrow 2.5$$

$$\therefore$$
 Correct order is $CO > NO > O_2^{-2}$

- 6. Which one of the following ores contains sulphide ions?
 - (1) Malachite
- (2) Calamine
- (3) Sphalerite
- (4) Siderite

Answer (3)

Sol. The chemical formulae of the given ores are

CuCO₃.Cu(OH)₂ Malachite

Calamine ZnCO₃ Sphalerite ZnS Siderite FeCO₃

.. Sphalerite contains sulphide ions.

7. Statement-I: Ionisation enthalpy difference from B to AI is more than that of AI to Ga.

Statement-II: Ga has completely filled d-orbital.

Then, the correct option is?

- (1) Statement-I and Statement-II both are correct.
- (2) Statement-I is incorrect and Statement-II is correct.
- (3) Statement-I is correct and Statement-II is incorrect.
- (4) Statement-I and Statement-II both are incorrect.

Answer (1)

- **Sol.** Ga has similar ionisation enthalpy as Al because of inert pair effect (or completely filled d-orbital in Ga).
- 8. Which of the following relation is correct?
 - (1) $\Delta G = \Delta H T\Delta S$ (at constant T& P)
 - (2) $\Delta U = \Delta H + nR\Delta T$ (for n moles of ideal gas)
 - (3) $P\Delta V = (\Delta n)RT$
 - (4) None of these

Answer (1)

Sol. $\Delta G = \Delta H - T\Delta S \rightarrow correct$ relation at constant T & P

 $\Delta H = \Delta U + nR\Delta T$ (for n moles of an ideal gas)

 $P\Delta V = (\Delta n)RT$ [is only true for a chemical reaction at constant T & P] (not always true)

So, correct answer is (1)

- 9. Match the correct column.
 - (A) Thermosetting
- (p) Neoprene
- (B) Thermoplastic
- (q) Polyester
- (C) Elastomer
- (r) Polystyrene
- (D) Fibre
- (s) Urea formaldehyde resin
- (1) $A \rightarrow p$; $B \rightarrow r$; $C \rightarrow q$; $D \rightarrow s$
- (2) $A \rightarrow s$; $B \rightarrow r$; $C \rightarrow p$; $D \rightarrow q$
- (3) $A \rightarrow s$; $B \rightarrow r$; $C \rightarrow q$; $D \rightarrow p$
- (4) $A \rightarrow p$; $B \rightarrow r$; $C \rightarrow s$; $D \rightarrow q$

Answer (2)

- Sol. Urea- formaldehyde resin is Thermosetting
 - Polystyrene is Thermoplastic
- 10. At 300 K the ratio of V_{rms} and V_{avg} of oxygen molecule is $\sqrt{\frac{\alpha\pi}{\alpha+5}}$, the value of α will be
 - (1) 1

(2) 2

(3) 3

(4) 4

Answer (3)

Sol.
$$\frac{V_{ms}}{V_{avg}} = \frac{\sqrt{3\pi}}{\sqrt{8}} = \sqrt{\frac{\alpha\pi}{\alpha+5}}$$

11. Thermal decomposition products of LiNO₃ are

$$LiNO_3 \xrightarrow{\Delta} Products$$

- (1) LiNO₂ and O₂
- (2) LiNO₂, NO₂ and O₂
- (3) Li₂O, NO₂ and O₂
- (4) Li, NO and O₂

Answer (3)

Sol. Thermal decomposition of LiNO₃ gives the following products

$$4LiNO_3 \xrightarrow{\Delta} 2Li_2O + 4NO_2 + O_2$$

- 12. BOD value of drinking water ranges between
 - (1) 3-5
 - (2) 10-13
 - (3) 14-17
 - (4) 20-22

Answer (1)

- **Sol.** BOD value of drinking water ranges between 3 and 5
- 13. Match List-I with List-II.
 - (A) Electro-osmosis
- (P) Solvent moves from low concentration to high concentration of solution
- (B) Electrophoresis
- (Q) Solvent moves from high concentration to low concentration of solution
- (C) RO(Reverse osmosis)
- (R) Dispersion medium
 (DM) moves towards
 oppositely charged
 electrode across
 semi-permeable
 membrane
- (D) Osmosis
- (S) Colloidal particles move in the presence of electric field. (DP and DM)
- (1) A(R), B(S), C(Q), D(P)
- (2) A(Q), B(P), C(R), D(S)
- (3) A(P), B(Q), C(R), D(S)
- (4) A(P), B(R), C(Q), D(S)

Answer (1)

JEE (Main)-2023: Phase-1 (29-01-2023)-Evening

Sol. All options are definition based.

- (A) Electro-osmosis \rightarrow movement of DM across SPM
- (B) Electrophoresis → movement of DP and DM towards respective electrodes
- (C) RO → movement of solvent from high concentration to low concentration
- (D) Osmosis → movement of solvent from low concentration to high concentration
- 14. The ratio of de-Broglie wavelength of proton to that of α -particle if they are accelerated through same potential
 - (1) $2\sqrt{2}:1$
 - (2) 2:1
 - (3) $1: 2\sqrt{2}$
 - (4) $\sqrt{2}:1$

Answer (1)

Sol.
$$\frac{\lambda \rho}{\lambda \alpha} = \sqrt{\frac{m\alpha \cdot kE_{\alpha}}{m\rho \cdot kE_{\rho}}}$$

$$= \sqrt{\frac{4m\rho \cdot 2V}{m\rho \cdot V}}$$

$$=\sqrt{8}:1$$

$$= 2\sqrt{2}:1$$

- 15. Which of the following is produced when propanamide is treated with ${\sf Br}_2$ in presence of KOH?
 - (1) Ethyl nitrile
 - (2) Propanamine
 - (3) Ethylamine
 - (4) Propanenitrile

Answer (3)

Sol.
$$CH_3CH_2 - C - NH_2 \xrightarrow{Br_2/KOH} CH_3CH_2NH_2$$

16. Consider the following reaction:

Find the number of α -H in the major product 'P'?

- (1) 7
- (2) 8
- (3) 9
- (4) 10

Answer (4)

Sol.

$$\begin{array}{c}
 & \stackrel{H^{\oplus}}{\longrightarrow} \\
 & \stackrel{\longrightarrow}{\longrightarrow} \\
 & \stackrel{\longrightarrow}{\longrightarrow} \\
 & \stackrel{\longrightarrow}{\longrightarrow} \\
 & \stackrel{\longrightarrow}{\longrightarrow} \\
 & \stackrel{\longleftarrow}{\longrightarrow} \\
 & \stackrel{\longrightarrow}{\longrightarrow} \\
 & \stackrel{\longleftarrow}{\longrightarrow} \\
 & \stackrel{\longleftarrow}{\longrightarrow}$$

Number of α -H in 'P' = 10

A and B respectively

(1)
$$CH_3 - CH_2 - NH_2$$
 and COO^-Na^+

(2)
$$CH_3 - CH_2 - NH_2$$
 and COO^-Na^+

(3)
$$CH_3-CH_2-C-NH_2$$
 and O

(4)
$$CH_3-CH_2-C-OH$$
 and O

Answer (1)

- 18. The colour of CrO₅ in ether is
 - (1) Yellow
 - (2) Green
 - (3) Blue
 - (4) Orange

Answer (3)

Sol. CrO₅ is blue in colour

The number of voids in 0.02 moles of a solid which forms HCP lattice is _____.

[Given : $N_A = 6 \times 10^{23}$]

- (1) 3.6×10^{22}
- (2) 3.6×10^{24}
- (3) 7.2×10^{20}
- (4) 5.4×10^{26}

Answer (1)

Sol. Voids =
$$\frac{18}{6} \times 6 \times 10^{23} \times 0.02$$

$$= 3.6 \times 10^{22}$$

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

How many oxides are acidic?
 NO, NO₂, N₂O₃, Cl₂O₇, CO, SO₂, SO₃, N₂O

Answer (5)

Sol. Acidic oxides \rightarrow NO₂, N₂O₃, Cl₂O₇, SO₂, SO₃

22. A 1 : 1 (by mole) mixture of A and B is present in a container. Molar mass of A = 16 g and molar mass of B is 32 and the half life of A is 1 day and half life of B is $\frac{1}{2}$ day. Then find the average molar mass of the mixture of A and B remained in the container after 2 days is ______.? [Round off to nearest integer]

Answer (19)

Sol. For A $1 \xrightarrow{2 \text{ days}} \frac{1}{4}$ moles remained

For B 1 $\xrightarrow{2 \text{ days}} \frac{1}{16}$ moles remained

$$\therefore M_{avg} = \frac{\frac{1}{4} \times 16 + \frac{1}{16} \times 32}{\frac{1}{4} + \frac{1}{16}}$$

$$= 19.2 g$$

- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.